[go: up one dir, main page]

Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1989 Sep;9(9):4109–4112. doi: 10.1128/mcb.9.9.4109

Autoregulation of interleukin 6 and granulocyte-macrophage colony-stimulating factor in the differentiation of myeloid leukemic cells.

Y Shabo 1, J Lotem 1, L Sachs 1
PMCID: PMC362483  PMID: 2674690

Abstract

Induction of differentiation in one type of clone of mouse myeloid leukemic cells by mouse or human interleukin 6 (IL-6) and in another type of clone by mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) was found to be associated with induction of IL-6 and GM-CSF mRNA and protein. The results indicated that IL-6 and GM-CSF could positively autoregulate their own gene expression during myeloid cell differentiation. It is suggested that this autoregulation may serve to enhance and prolong the signal induced by these proteins in cells transiently exposed to IL-6 or GM-CSF.

Full text

PDF
4109

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel P., Hattori K., Smeal T., Karin M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell. 1988 Dec 2;55(5):875–885. doi: 10.1016/0092-8674(88)90143-2. [DOI] [PubMed] [Google Scholar]
  2. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bienz M., Tremml G. Domain of Ultrabithorax expression in Drosophila visceral mesoderm from autoregulation and exclusion. Nature. 1988 Jun 9;333(6173):576–578. doi: 10.1038/333576a0. [DOI] [PubMed] [Google Scholar]
  4. Clark S. C., Kamen R. The human hematopoietic colony-stimulating factors. Science. 1987 Jun 5;236(4806):1229–1237. doi: 10.1126/science.3296190. [DOI] [PubMed] [Google Scholar]
  5. Czosnek H., Nudel U., Mayer Y., Barker P. E., Pravtcheva D. D., Ruddle F. H., Yaffe D. The genes coding for the cardiac muscle actin, the skeletal muscle actin and the cytoplasmic beta-actin are located on three different mouse chromosomes. EMBO J. 1983;2(11):1977–1979. doi: 10.1002/j.1460-2075.1983.tb01687.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeLamarter J. F., Mermod J. J., Liang C. M., Eliason J. F., Thatcher D. R. Recombinant murine GM-CSF from E. coli has biological activity and is neutralized by a specific antiserum. EMBO J. 1985 Oct;4(10):2575–2581. doi: 10.1002/j.1460-2075.1985.tb03973.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dinarello C. A., Ikejima T., Warner S. J., Orencole S. F., Lonnemann G., Cannon J. G., Libby P. Interleukin 1 induces interleukin 1. I. Induction of circulating interleukin 1 in rabbits in vivo and in human mononuclear cells in vitro. J Immunol. 1987 Sep 15;139(6):1902–1910. [PubMed] [Google Scholar]
  8. Fibach E., Hayashi M., Sachs L. Control of normal differentiation of myeloid leukemic cells to macrophages and granulocytes. Proc Natl Acad Sci U S A. 1973 Feb;70(2):343–346. doi: 10.1073/pnas.70.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ichikawa Y. Differentiation of a cell line of myeloid leukemia. J Cell Physiol. 1969 Dec;74(3):223–234. doi: 10.1002/jcp.1040740303. [DOI] [PubMed] [Google Scholar]
  10. Kindler V., Thorens B., de Kossodo S., Allet B., Eliason J. F., Thatcher D., Farber N., Vassalli P. Stimulation of hematopoiesis in vivo by recombinant bacterial murine interleukin 3. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1001–1005. doi: 10.1073/pnas.83.4.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krystosek A., Sachs L. Control of lysozyme induction in the differentiation of myeloid leukemic cells. Cell. 1976 Dec;9(4 Pt 2):675–684. doi: 10.1016/0092-8674(76)90131-8. [DOI] [PubMed] [Google Scholar]
  12. Liebermann D., Hoffman-Liebermann B., Sachs L. Regulation and role of different macrophage-and granulocyte-inducing proteins in normal and leukemic myeloid cells. Int J Cancer. 1982 Feb 15;29(2):159–161. doi: 10.1002/ijc.2910290208. [DOI] [PubMed] [Google Scholar]
  13. Lipton J. H., Sachs L. Characterization of macrophage- and granulocyte-inducing proteins for normal and leukemic myeloid cells produced by the Krebs ascites tumor. Biochim Biophys Acta. 1981 Apr 3;673(4):552–569. doi: 10.1016/0304-4165(81)90486-4. [DOI] [PubMed] [Google Scholar]
  14. Lotem J., Lipton J. H., Sachs L. Separation of different molecular forms of macrophage- and granulocyte-inducing proteins for normal and leukemic myeloid cells. Int J Cancer. 1980 Jun 15;25(6):763–771. doi: 10.1002/ijc.2910250612. [DOI] [PubMed] [Google Scholar]
  15. Lotem J., Sachs L. Genetic dissection of the control of normal differentiation in myeloid leukemic cells. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5554–5558. doi: 10.1073/pnas.74.12.5554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lotem J., Sachs L. In vivo control of differentiation of myeloid leukemic cells by cyclosporine A and recombinant interleukin-1 alpha. Blood. 1988 Nov;72(5):1595–1601. [PubMed] [Google Scholar]
  17. Lotem J., Sachs L. In vivo control of differentiation of myeloid leukemic cells by recombinant granulocyte-macrophage colony-stimulating factor and interleukin 3. Blood. 1988 Feb;71(2):375–382. [PubMed] [Google Scholar]
  18. Lotem J., Sachs L. Regulation of cell surface receptors for different hematopoietic growth factors on myeloid leukemic cells. EMBO J. 1986 Sep;5(9):2163–2170. doi: 10.1002/j.1460-2075.1986.tb04480.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lotem J., Sachs L. Regulation of cell-surface receptors for hematopoietic differentiation-inducing protein MGI-2 on normal and leukemic myeloid cells. Int J Cancer. 1987 Oct 15;40(4):532–539. doi: 10.1002/ijc.2910400417. [DOI] [PubMed] [Google Scholar]
  20. Lotem J., Shabo Y., Sachs L. Role of different normal hematopoietic regulatory proteins in the differentiation of myeloid leukemic cells. Int J Cancer. 1988 Jan 15;41(1):101–107. doi: 10.1002/ijc.2910410119. [DOI] [PubMed] [Google Scholar]
  21. Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science. 1985 Jul 5;229(4708):16–22. doi: 10.1126/science.2990035. [DOI] [PubMed] [Google Scholar]
  22. Miyatake S., Otsuka T., Yokota T., Lee F., Arai K. Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes. EMBO J. 1985 Oct;4(10):2561–2568. doi: 10.1002/j.1460-2075.1985.tb03971.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Niitsu Y., Watanabe N., Neda H., Yamauchi N., Maeda M., Sone H., Kuriyama H. Induction of synthesis of tumor necrosis factor in human and murine cell lines by exogenous recombinant human tumor necrosis factor. Cancer Res. 1988 Oct 1;48(19):5407–5410. [PubMed] [Google Scholar]
  24. Park L. S., Friend D., Gillis S., Urdal D. L. Characterization of the cell surface receptor for granulocyte-macrophage colony-stimulating factor. J Biol Chem. 1986 Mar 25;261(9):4177–4183. [PubMed] [Google Scholar]
  25. Pluznik D. H., Sachs L. The cloning of normal "mast" cells in tissue culture. J Cell Physiol. 1965 Dec;66(3):319–324. doi: 10.1002/jcp.1030660309. [DOI] [PubMed] [Google Scholar]
  26. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  27. Sachs L. The Wellcome Foundation lecture, 1986. The molecular regulators of normal and leukaemic blood cells. Proc R Soc Lond B Biol Sci. 1987 Aug 21;231(1264):289–312. doi: 10.1098/rspb.1987.0045. [DOI] [PubMed] [Google Scholar]
  28. Sachs L. The molecular control of blood cell development. Science. 1987 Dec 4;238(4832):1374–1379. doi: 10.1126/science.3317831. [DOI] [PubMed] [Google Scholar]
  29. Shabo Y., Lotem J., Rubinstein M., Revel M., Clark S. C., Wolf S. F., Kamen R., Sachs L. The myeloid blood cell differentiation-inducing protein MGI-2A is interleukin-6. Blood. 1988 Dec;72(6):2070–2073. [PubMed] [Google Scholar]
  30. Shabo Y., Lotem J., Sachs L. Target-cell specificity of hematopoietic regulatory proteins for different clones of myeloid leukemic cells: two regulators secreted by Krebs carcinoma cells. Int J Cancer. 1988 Apr 15;41(4):622–628. doi: 10.1002/ijc.2910410424. [DOI] [PubMed] [Google Scholar]
  31. Shabo Y., Sachs L. Inhibition of differentiation and affinity purification with a monoclonal antibody to a myeloid cell differentiation-inducing protein. Blood. 1988 Nov;72(5):1543–1549. [PubMed] [Google Scholar]
  32. Shaw G., Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. doi: 10.1016/0092-8674(86)90341-7. [DOI] [PubMed] [Google Scholar]
  33. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  34. Warner S. J., Auger K. R., Libby P. Human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle cells. J Exp Med. 1987 May 1;165(5):1316–1331. doi: 10.1084/jem.165.5.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Warner S. J., Auger K. R., Libby P. Interleukin 1 induces interleukin 1. II. Recombinant human interleukin 1 induces interleukin 1 production by adult human vascular endothelial cells. J Immunol. 1987 Sep 15;139(6):1911–1917. [PubMed] [Google Scholar]
  36. Wong G. G., Clark S. C. Multiple actions of interleukin 6 within a cytokine network. Immunol Today. 1988 May;9(5):137–139. doi: 10.1016/0167-5699(88)91200-5. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES