[go: up one dir, main page]

Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1994 Jan;14(1):382–390. doi: 10.1128/mcb.14.1.382

Mice lacking c-fos have normal hematopoietic stem cells but exhibit altered B-cell differentiation due to an impaired bone marrow environment.

S Okada 1, Z Q Wang 1, A E Grigoriadis 1, E F Wagner 1, T von Rüden 1
PMCID: PMC358387  PMID: 8264605

Abstract

Mice lacking c-fos develop severe osteopetrosis with deficiencies in bone remodeling and exhibit extramedullary hematopoiesis, thymic atrophy, and altered B-cell development. In this study, we have used these mice to characterize in detail the developmental potential of hematopoietic stem cells lacking c-fos and to analyze how the lymphoid differentiation is altered. In c-fos -/- mice, B-cell numbers are reduced in the spleen, lymph nodes, and the peripheral blood as a result of a marked reduction (> 90%) in the number of clonogenic B-cell precursors. In contrast, the number and lineage distribution of myeloid progenitor cells are not affected. The thymic defects observed in a large number of these mice correlate with their health status, suggesting that this may be an indirect effect of the c-fos mutation. In vitro differentiation and bone marrow reconstitution experiments demonstrated that hematopoietic stem cells lacking c-fos can give rise to all mature myeloid as well as lymphoid cells, suggesting that the observed B lymphopenia in the mutant mice is due to an altered environment. Transplantation of wild-type bone marrow cells into newborn mutant mice resulted in the establishment of a bone marrow space and subsequent correction of the B-cell defect. These results demonstrate that hematopoietic stem cells lacking Fos have full developmental potential and that the observed defect in B-cell development is most likely due to the impaired bone marrow environment as a consequence of osteopetrosis.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel P., Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991 Dec 10;1072(2-3):129–157. doi: 10.1016/0304-419x(91)90011-9. [DOI] [PubMed] [Google Scholar]
  2. Distel R. J., Spiegelman B. M. Protooncogene c-fos as a transcription factor. Adv Cancer Res. 1990;55:37–55. doi: 10.1016/s0065-230x(08)60467-4. [DOI] [PubMed] [Google Scholar]
  3. Dorshkind K., Landreth K. S. Regulation of B cell differentiation by bone marrow stromal cells. Int J Cell Cloning. 1992 Jan;10(1):12–17. doi: 10.1002/stem.5530100104. [DOI] [PubMed] [Google Scholar]
  4. Field S. J., Johnson R. S., Mortensen R. M., Papaioannou V. E., Spiegelman B. M., Greenberg M. E. Growth and differentiation of embryonic stem cells that lack an intact c-fos gene. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9306–9310. doi: 10.1073/pnas.89.19.9306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fujita K., Miki N., Mojica M. P., Takao S., Phuchareon J., Nishikawa S., Sudo T., Tokuhisa T. B cell development is perturbed in bone marrow from c-fos/v-jun doubly transgenic mice. Int Immunol. 1993 Feb;5(2):227–230. doi: 10.1093/intimm/5.2.227. [DOI] [PubMed] [Google Scholar]
  6. Gonda T. J., Metcalf D. Expression of myb, myc and fos proto-oncogenes during the differentiation of a murine myeloid leukaemia. Nature. 1984 Jul 19;310(5974):249–251. doi: 10.1038/310249a0. [DOI] [PubMed] [Google Scholar]
  7. Grigoriadis A. E., Schellander K., Wang Z. Q., Wagner E. F. Osteoblasts are target cells for transformation in c-fos transgenic mice. J Cell Biol. 1993 Aug;122(3):685–701. doi: 10.1083/jcb.122.3.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gunji Y., Sudo T., Suda J., Yamaguchi Y., Nakauchi H., Nishikawa S., Yanai N., Obinata M., Yanagisawa M., Miura Y. Support of early B-cell differentiation in mouse fetal liver by stromal cells and interleukin-7. Blood. 1991 Jun 15;77(12):2612–2617. [PubMed] [Google Scholar]
  9. Hayashi S., Kunisada T., Ogawa M., Sudo T., Kodama H., Suda T., Nishikawa S., Nishikawa S. Stepwise progression of B lineage differentiation supported by interleukin 7 and other stromal cell molecules. J Exp Med. 1990 May 1;171(5):1683–1695. doi: 10.1084/jem.171.5.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herzenberg L. A., Kantor A. B. B-cell lineages exist in the mouse. Immunol Today. 1993 Feb;14(2):79–90. doi: 10.1016/0167-5699(93)90063-Q. [DOI] [PubMed] [Google Scholar]
  11. Iscove N. N., Sieber F., Winterhalter K. H. Erythroid colony formation in cultures of mouse and human bone marrow: analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose-concanavalin A. J Cell Physiol. 1974 Apr;83(2):309–320. doi: 10.1002/jcp.1040830218. [DOI] [PubMed] [Google Scholar]
  12. Johnson R. S., Spiegelman B. M., Papaioannou V. Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell. 1992 Nov 13;71(4):577–586. doi: 10.1016/0092-8674(92)90592-z. [DOI] [PubMed] [Google Scholar]
  13. Kantor A. B., Herzenberg L. A. Origin of murine B cell lineages. Annu Rev Immunol. 1993;11:501–538. doi: 10.1146/annurev.iy.11.040193.002441. [DOI] [PubMed] [Google Scholar]
  14. Karasuyama H., Melchers F. Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur J Immunol. 1988 Jan;18(1):97–104. doi: 10.1002/eji.1830180115. [DOI] [PubMed] [Google Scholar]
  15. Kodama H. A., Amagai Y., Koyama H., Kasai S. A new preadipose cell line derived from newborn mouse calvaria can promote the proliferation of pluripotent hemopoietic stem cells in vitro. J Cell Physiol. 1982 Jul;112(1):89–95. doi: 10.1002/jcp.1041120114. [DOI] [PubMed] [Google Scholar]
  16. Kreipe H., Radzun H. J., Heidorn K., Mäder C., Parwaresch M. R. Human neutrophilic and eosinophilic granulocytes display different levels of c-fos proto-oncogene expression: an in situ hybridization study. J Histochem Cytochem. 1987 Aug;35(8):837–842. doi: 10.1177/35.8.3298425. [DOI] [PubMed] [Google Scholar]
  17. MCCULLOCH E. A., SIMINOVITCH L., TILL J. E. SPLEEN-COLONY FORMATION IN ANEMIC MICE OF GENOTYPE WW. Science. 1964 May 15;144(3620):844–846. doi: 10.1126/science.144.3620.844. [DOI] [PubMed] [Google Scholar]
  18. Marks S. C., Jr, Lane P. W. Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse. J Hered. 1976 Jan-Feb;67(1):11–18. doi: 10.1093/oxfordjournals.jhered.a108657. [DOI] [PubMed] [Google Scholar]
  19. Milhaud G., Labat M. L., Moricard Y. (Dichloromethylene)diphosphonate-induced impairment of T-lymphocyte function. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4469–4473. doi: 10.1073/pnas.80.14.4469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Müller R., Curran T., Müller D., Guilbert L. Induction of c-fos during myelomonocytic differentiation and macrophage proliferation. Nature. 1985 Apr 11;314(6011):546–548. doi: 10.1038/314546a0. [DOI] [PubMed] [Google Scholar]
  21. Reed J. C., Alpers J. D., Nowell P. C., Hoover R. G. Sequential expression of protooncogenes during lectin-stimulated mitogenesis of normal human lymphocytes. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3982–3986. doi: 10.1073/pnas.83.11.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rüther U., Garber C., Komitowski D., Müller R., Wagner E. F. Deregulated c-fos expression interferes with normal bone development in transgenic mice. 1987 Jan 29-Feb 4Nature. 325(6103):412–416. doi: 10.1038/325412a0. [DOI] [PubMed] [Google Scholar]
  23. Rüther U., Müller W., Sumida T., Tokuhisa T., Rajewsky K., Wagner E. F. c-fos expression interferes with thymus development in transgenic mice. Cell. 1988 Jun 17;53(6):847–856. doi: 10.1016/s0092-8674(88)90289-9. [DOI] [PubMed] [Google Scholar]
  24. Soriano P., Montgomery C., Geske R., Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 1991 Feb 22;64(4):693–702. doi: 10.1016/0092-8674(91)90499-o. [DOI] [PubMed] [Google Scholar]
  25. Suda T., Okada S., Suda J., Miura Y., Ito M., Sudo T., Hayashi S., Nishikawa S., Nakauchi H. A stimulatory effect of recombinant murine interleukin-7 (IL-7) on B-cell colony formation and an inhibitory effect of IL-1 alpha. Blood. 1989 Nov 1;74(6):1936–1941. [PubMed] [Google Scholar]
  26. Takao S., Sakai N., Hatano M., Koizumi T., Hanioka K., Rüther U., Tokuhisa T. IgG response is impaired in H2-c-fos transgenic mice. Int Immunol. 1991 Apr;3(4):369–375. doi: 10.1093/intimm/3.4.369. [DOI] [PubMed] [Google Scholar]
  27. Wang Z. Q., Grigoriadis A. E., Möhle-Steinlein U., Wagner E. F. A novel target cell for c-fos-induced oncogenesis: development of chondrogenic tumours in embryonic stem cell chimeras. EMBO J. 1991 Sep;10(9):2437–2450. doi: 10.1002/j.1460-2075.1991.tb07783.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang Z. Q., Ovitt C., Grigoriadis A. E., Möhle-Steinlein U., Rüther U., Wagner E. F. Bone and haematopoietic defects in mice lacking c-fos. Nature. 1992 Dec 24;360(6406):741–745. doi: 10.1038/360741a0. [DOI] [PubMed] [Google Scholar]
  29. Whitlock C. A., Witte O. N. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3608–3612. doi: 10.1073/pnas.79.11.3608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yanai N., Matsuya Y., Obinata M. Spleen stromal cell lines selectively support erythroid colony formation. Blood. 1989 Nov 15;74(7):2391–2397. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES