Aksjomat Pascha
Aksjomat Pascha – aksjomat płaszczyzny euklidesowej niedający się wyprowadzić z pięciu aksjomatów Euklidesa:
- Dane są na płaszczyźnie prosta i punkty i spoza takie, że odcinek przecina Jeśli jest kolejnym punktem poza to dokładnie jeden z odcinków lub przecina [a].
Inna postać aksjomatu[1]:
- Prosta na płaszczyźnie, która nie przechodzi przez żaden z wierzchołków trójkąta i przecina jeden jego bok, przecina jeszcze drugi.
Aksjomat Pascha pozwala zdefiniować pojęcie półpłaszczyzny. W tym celu wprowadza się pojęcie leżenia dwóch punktów po jednej stronie prostej:
- Punkty leżą po jednej stronie prostej jeśli odcinek jest rozłączny z prostą .
Tak zdefiniowana relacja jest relacją równoważności, której zwrotność i symetria są trywialne, zaś przechodniość tej relacji jest kontrapozycją aksjomatu Pascha.
Dowodzi się, że dla relacji leżenia po jednej stronie prostej istnieją dokładnie dwie klasy abstrakcji. Każdą z nich nazywa się półpłaszczyzną wyznaczoną przez daną prostą. Oczywiście z definicji, każda z tych półpłaszczyzn jest zbiorem wypukłym.
Aksjomat Pascha został sformułowany przez XIX-wiecznego matematyka Moritza Pascha w Vorlesungen übr neuere Geometrie, Lepizig 1882. David Hilbert w swojej aksjomatyce zalicza go do tzw. aksjomatów porządku.
Uwagi
[edytuj | edytuj kod]- ↑ Tezę aksjomatu można sformułować w słabszej wersji: któryś z odcinków przecina
Przypisy
[edytuj | edytuj kod]- ↑ aksjomat Pascha, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2022-12-03] .
Bibliografia
[edytuj | edytuj kod]- Jerzy Mioduszewski. Wykłady z topologii. Topologia przestrzeni euklidesowych. „Skrypty Uniwersytetu Śląskiego”. 501, 1994. Katowice: Wydawnictwo Uniwersytetu Śląskiego. ISSN 0239-6432.