[go: up one dir, main page]

The role of Disentanglement in GeneralisationDownload PDF

Published: 12 Jan 2021, Last Modified: 05 May 2023ICLR 2021 PosterReaders: Everyone
Keywords: disentanglement, compositionality, compositional generalization, generalisation, generative models, variational autoencoders
Abstract: Combinatorial generalisation — the ability to understand and produce novel combinations of familiar elements — is a core capacity of human intelligence that current AI systems struggle with. Recently, it has been suggested that learning disentangled representations may help address this problem. It is claimed that such representations should be able to capture the compositional structure of the world which can then be combined to support combinatorial generalisation. In this study, we systematically tested how the degree of disentanglement affects various forms of generalisation, including two forms of combinatorial generalisation that varied in difficulty. We trained three classes of variational autoencoders (VAEs) on two datasets on an unsupervised task by excluding combinations of generative factors during training. At test time we ask the models to reconstruct the missing combinations in order to measure generalisation performance. Irrespective of the degree of disentanglement, we found that the models supported only weak combinatorial generalisation. We obtained the same outcome when we directly input perfectly disentangled representations as the latents, and when we tested a model on a more complex task that explicitly required independent generative factors to be controlled. While learning disentangled representations does improve interpretability and sample efficiency in some downstream tasks, our results suggest that they are not sufficient for supporting more difficult forms of generalisation.
One-sentence Summary: Disentangled models do not achieve compositional generalization when tested systematically.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Supplementary Material: zip
Data: [3D Shapes Dataset](https://paperswithcode.com/dataset/3d-shapes-dataset), [dSprites](https://paperswithcode.com/dataset/dsprites)
12 Replies

Loading