# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a377045 Showing 1-1 of 1 %I A377045 #12 Nov 15 2024 09:06:17 %S A377045 15,490,21637,1121505,3913864295,1131238503938606,78801255302666615, %T A377045 5589233202595404488,29349508915133986374841, %U A377045 2163909235608484556362424,913865816485680423486405066750,191623400974625892978847721669762887224010 %N A377045 Number of partitions of cuban primes. %C A377045 Number of partitions of prime numbers that are the difference of two consecutive cubes. %C A377045 Number of partitions of primes p such that p=(3*k^2 + 1)/4 for some integer k (A121259). %H A377045 Robert Israel, Table of n, a(n) for n = 1..153 %F A377045 a(n) = A000041(A002407(n)). %F A377045 a(n) = A000041((3*A121259(n)^2 + 1)/4). %p A377045 R:= NULL: count:= 0: %p A377045 for i from 1 while count < 30 do %p A377045 p:= (i+1)^3 - i^3; %p A377045 if isprime(p) then count:= count+1; v:= combinat:-numbpart(p); R:= R,v; fi %p A377045 od: %p A377045 R; # _Robert Israel_, Nov 14 2024 %t A377045 PartitionsP[Select[Table[(3k^2 + 1)/4,{k,50}],PrimeQ]] %Y A377045 Cf. A000041, A002407, A121259. %K A377045 nonn %O A377045 1,1 %A A377045 _Paul F. Marrero Romero_, Oct 14 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE