# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a376590 Showing 1-1 of 1 %I A376590 #11 Oct 02 2024 12:26:06 %S A376590 0,1,-1,0,2,-2,1,-1,0,1,0,0,-1,0,2,0,-2,0,1,-1,0,1,-1,0,1,-1,0,2,-2,3, %T A376590 -2,0,0,-1,0,1,-1,2,-2,0,1,-1,0,1,-1,2,-2,0,2,-2,1,-1,0,1,0,0,-1,0,1, %U A376590 2,-3,0,1,-1,0,1,-1,0,1,-1,0,2,-2,2,-2,3,-2,-1 %N A376590 Second differences of consecutive squarefree numbers (A005117). First differences of A076259. %e A376590 The squarefree numbers (A005117) are: %e A376590 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ... %e A376590 with first differences (A076259): %e A376590 1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ... %e A376590 with first differences (A376590): %e A376590 0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ... %t A376590 Differences[Select[Range[100],SquareFreeQ],2] %o A376590 (Python) %o A376590 from math import isqrt %o A376590 from sympy import mobius %o A376590 def A376590(n): %o A376590 def iterfun(f,n=0): %o A376590 m, k = n, f(n) %o A376590 while m != k: m, k = k, f(k) %o A376590 return m %o A376590 def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) %o A376590 a = iterfun(f,n) %o A376590 b = iterfun(lambda x:f(x)+1,a) %o A376590 return a+iterfun(lambda x:f(x)+2,b)-(b<<1) # _Chai Wah Wu_, Oct 02 2024 %Y A376590 The version for A000002 is A376604, first differences of A054354. %Y A376590 The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311. %Y A376590 Zeros are A376591, complement A376592. %Y A376590 Sorted positions of first appearances are A376655. %Y A376590 A000040 lists the prime numbers, differences A001223. %Y A376590 A001597 lists perfect-powers, complement A007916. %Y A376590 A005117 lists squarefree numbers, complement A013929 (differences A078147). %Y A376590 A073576 counts integer partitions into squarefree numbers, factorizations A050320. %Y A376590 A333254 lists run-lengths of differences between consecutive primes. %Y A376590 For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive). %Y A376590 For squarefree numbers: A076259 (first differences), A376591 (inflections and undulations), A376592 (nonzero curvature), A376655 (sorted first positions). %Y A376590 Cf. A000961, A007674, A053797, A053806, A061398, A072284, A112925, A112926, A120992, A251092, A373198, A376342. %K A376590 sign %O A376590 1,5 %A A376590 _Gus Wiseman_, Oct 01 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE