# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a375720 Showing 1-1 of 1 %I A375720 #17 Sep 12 2024 21:38:27 %S A375720 1,-1,1,3,-1,-3,-10,-15,1,3,10,30,55,105,105,-1,-3,-10,-30,-76,-168, %T A375720 -350,-630,-910,-1260,-945,1,3,10,30,76,196,434,910,1806,3381,5789, %U A375720 9135,12880,15750,17325,10395,-1,-3,-10,-30,-76,-196,-470,-1018,-2166,-4461,-8609,-16065,-28336,-48006,-78519,-120960,-172200,-228375,-275275,-294525,-270270,-135135 %N A375720 Irregular triangle, read by rows: Coefficients of the polynomials P_n, n>=2 such that the series f(x) = c + c(x-c) + Sum_{n>=2} P_n(c)/c^((n-1)*(n+2)/2+1) (x-c)^n/n! satisfies f(c) = c and f'(f(x)) = x near the fixed point c in (0,oo). %C A375720 The indices in each row range from 0 to (n-3)*(n-2)/2 %C A375720 When c = phi = (1+sqrt(5))/2 the series becomes the Taylor expansion of f(x) = phi^(-1/phi)*x^phi centered at phi, in particular the radius of convergence is positive for at least this choice of c. %e A375720 Triangle begins: %e A375720 1; %e A375720 -1; %e A375720 1, 3; %e A375720 -1, -3, -10, -15; %e A375720 1, 3, 10, 30, 55, 105, 105; %e A375720 -1, -3, -10, -30, -76, -168, -350, -630, -910, -1260, -945; %e A375720 ... %e A375720 Polynomials are: %e A375720 P_2(c) = 1 %e A375720 P_3(c) = -1 %e A375720 P_4(c) = 1 + 3c %e A375720 P_5(c) = -1 - 3c - 10c^2 - 15c^3 %e A375720 etc. %e A375720 Hence the series begins %e A375720 f(x) = c + c*(x-c) + c^(-1)(x-c)^2/2 - c^(-4)(x-c)^3/6 + (3c^(-7) + c^(-8))(x-c)^4/24 + ... %o A375720 (Python) %o A375720 def T(n,k): %o A375720 c = {(-1,):1} #Polynomial in infinitely many variables (function iterates) %o A375720 for _ in range(n-2): %o A375720 cnext = {} %o A375720 for key, value in c.items(): %o A375720 key += (0,) %o A375720 for i, ni in enumerate(key): %o A375720 term = tuple(nj-2 if j==i else nj-1 if j<=i+1 else nj %o A375720 for j,nj in enumerate(key)) %o A375720 cnext[term] = cnext.get(term,0) + value*ni %o A375720 if cnext[term] == 0: %o A375720 del cnext[term] %o A375720 c = cnext %o A375720 pairs = {} #Reduction to single variable (evaluation at fixpoint) %o A375720 for key, value in c.items(): %o A375720 s = sum(key) %o A375720 pairs[s] = pairs.get(s,0) + value %o A375720 return pairs.get(1+k-(n-1)*(n+2)//2,0) %Y A375720 Cf. A144006. %K A375720 sign,tabf %O A375720 2,4 %A A375720 _Lucas Larsen_, Aug 26 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE