# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a360151 Showing 1-1 of 1 %I A360151 #12 Mar 12 2023 11:20:44 %S A360151 1,2,6,21,74,267,981,3648,13690,51744,196699,751237,2880345,11080081, %T A360151 42743148,165291569,640563158,2487083484,9672626600,37674470433, %U A360151 146937686295,573781535775,2243050091905,8777451670102,34379401083017,134770951530840 %N A360151 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-4*k,n-3*k). %F A360151 G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)^2) ), where c(x) is the g.f. of A000108. %F A360151 a(n) ~ 2^(2*n+4) / (15*sqrt(Pi*n)). - _Vaclav Kotesovec_, Jan 28 2023 %F A360151 D-finite with recurrence +2*n*a(n) +(-11*n+6)*a(n-1) +(19*n-24)*a(n-2) +2*(-16*n+33)*a(n-3) +2*(11*n-36)*a(n-4) +(-25*n+78)*a(n-5) +6*(n-3)*a(n-6) +4*(-2*n+9)*a(n-7)=0. - _R. J. Mathar_, Mar 12 2023 %p A360151 A360151 := proc(n) %p A360151 add(binomial(2*n-4*k,n-3*k),k=0..n/3) ; %p A360151 end proc: %p A360151 seq(A360151(n),n=0..70) ; # _R. J. Mathar_, Mar 12 2023 %t A360151 a[n_] := Sum[Binomial[2*n - 4*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* _Amiram Eldar_, Jan 28 2023 *) %o A360151 (PARI) a(n) = sum(k=0, n\3, binomial(2*n-4*k, n-3*k)); %o A360151 (PARI) my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^2))) %Y A360151 Cf. A105872, A144904, A360150, A360152, A360153. %Y A360151 Cf. A000108. %K A360151 nonn %O A360151 0,2 %A A360151 _Seiichi Manyama_, Jan 28 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE