# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a369925 Showing 1-1 of 1 %I A369925 #7 Feb 06 2024 16:24:00 %S A369925 1,0,1,1,2,1,6,1,33,23,295,1,4877,1,44191,141210,749316,1,31762349,1, %T A369925 309754506,3980911205,4704612121,1,1303743206944,55279816357, %U A369925 2737023412201,343866841144704,564548508168226,1,145630899385513158,1,2359434158555273239 %N A369925 Number of uniform circular words of length n with adjacent elements unequal using an infinite alphabet up to permutations of the alphabet. %C A369925 A word is uniform here if each symbol that occurs in the word occurs with the same frequency. %C A369925 a(n) is the number of ways to partition [n] into parts of equal size and no part containing values that differ by 1 modulo n. %H A369925 Andrew Howroyd, Table of n, a(n) for n = 0..200 %F A369925 a(n) = Sum_{d|n} A369923(d, n/d} for n > 0. %F A369925 a(p) = 1 for prime p. %e A369925 a(1) = 0 because the symbol 'a' is considered to be adjacent to itself in a circular word. The set partition {{1}} is also excluded because 1 == 1 + 1 (mod 1). %e A369925 The a(6) = 6 words are ababab, abacbc, abcabc, abcacb, abcbac, abcdef. %e A369925 The corresponding a(6) = 6 set partitions are: %e A369925 {{1,3,5},{2,4,6}}, %e A369925 {{1,3},{2,5},{4,6}}, %e A369925 {{1,4},{2,5},{3,6}}, %e A369925 {{1,4},{2,6},{3,5}}, %e A369925 {{1,5},{2,4},{3,6}}, %e A369925 {{1},{2},{3},{4},{5},{6}}. %o A369925 (PARI) \\ Needs T(n,k) from A369923. %o A369925 a(n) = {if(n==0, 1, sumdiv(n, d, T(d, n/d)))} %Y A369925 The case for adjacent elements possibly equal is A038041. %Y A369925 Cf. A369923, A369924 (linear words). %K A369925 nonn %O A369925 0,5 %A A369925 _Andrew Howroyd_, Feb 06 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE