# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a367071 Showing 1-1 of 1 %I A367071 #13 Dec 04 2023 05:35:43 %S A367071 1,2,2,8,16,48,136,384,1184,3520,10944,34048,107008,340480,1087104, %T A367071 3502080,11333120,36867072,120491008,395276288,1301700608,4300414976, %U A367071 14250496000,47353233408,157747462144,526740717568,1762653863936,5910312910848 %N A367071 G.f. satisfies A(x) = 1 + 2*x + 2*x^2*A(x)^2. %F A367071 G.f.: A(x) = 2*(1+2*x) / (1+sqrt(1-8*x^2*(1+2*x))). %F A367071 a(n) = Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(k+1,n-2*k) * A000108(k). %F A367071 D-finite with recurrence (n+2)*a(n) +8*(-n+1)*a(n-2) +8*(-2*n+5)*a(n-3)=0. - _R. J. Mathar_, Dec 04 2023 %p A367071 A367071 := proc(n) %p A367071 add(2^(n-k) * binomial(k+1,n-2*k) * A000108(k),k=0..floor(n/2)) ; %p A367071 end proc: %p A367071 seq(A367071(n),n=0..70) ; # _R. J. Mathar_, Dec 04 2023 %o A367071 (PARI) a(n) = sum(k=0, n\2, 2^(n-k)*binomial(k+1, n-2*k)*binomial(2*k, k)/(k+1)); %Y A367071 Cf. A000108, A253918, A354733. %K A367071 nonn %O A367071 0,2 %A A367071 _Seiichi Manyama_, Nov 05 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE