# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a352314 Showing 1-1 of 1 %I A352314 #40 Mar 15 2022 05:15:11 %S A352314 10,10,16,40,40,48,16,49,55,80,104,104,15,169,176,130,130,240,231,361, %T A352314 416,246,246,480,272,272,480,480,510,510,296,296,560,350,350,672,455, %U A352314 961,1104,672,1200,1200,259,1040,1221,1040,1369,1551,1160,1160,1680,1218,1218,1680 %N A352314 Primitive triples (a, b, c) of integer-sided triangles such that the distance d = OI between the circumcenter O and the incenter I is also a positive integer. The triples of sides (a, b, c) are in increasing order a <= b <= c. %C A352314 The triples (a, b, c) are displayed in increasing order of largest side c, and if largest sides c coincide then by increasing order of the middle side b. %C A352314 Primitive triples means here that gcd(a, b, c, d) = 1 (see first example). %C A352314 Equilateral triangles are not present because in this case O = I and d = 0. %C A352314 Euler's triangle formula says that distance between the circumcenter O and the incenter I of a triangle is given by d = OI = sqrt(R*(R-2r)). %C A352314 Heron's formula says the area A of a triangle whose sides have lengths a, b and c is given by A = sqrt(s(s-a)(s-b)(s-c)), where s = (a+b+c)/2; then, the circumradius is given by R = abc/4A and the inradius r is given by r = A/s. %C A352314 With these relations, d = OI = abc * sqrt(1/(16*A^2) - 1/(abc*(a+b+c))). %C A352314 +-----+-----+-----+---------------+---------------+-----+----------------------+ %C A352314 | a | b | c | r | R | d | a+b+c| A | %C A352314 +-----------+-----+---------------+---------------+-----+------+---------------+ %C A352314 | 10 | 10 | 16 | 8/3 | 25/3 | 5 | 36 | 48 | %C A352314 | 40 | 40 | 48 | 12 | 25 | 5 | 128 | 768 | %C A352314 | 16 | 49 | 55 | 11*sqrt(3)/3 | 49*sqrt(3)/3 | 21 | 120 | 220*sqrt(3) | %C A352314 | 80 | 104 | 104 | 80/3 | 169/3 | 13 | 288 | 3840 | %C A352314 | 15 | 169 | 176 | 11*sqrt(3)/3 | 169*sqrt(3)/3 | 91 | 360 | 1903sqrt(3)/3 | %C A352314 | 130 | 130 | 240 | 24 | 169 | 143 | 500 | 6000 | %C A352314 | 231 | 361 | 416 | 143*sqrt(3)/3 | 361*sqrt(3)/3 | 95 | 1008 | 24024*sqrt(3) | %C A352314 | 246 | 246 | 480 | 80/3 | 1681/3 | 533 | 972 | 12960 | %C A352314 | 272 | 272 | 480 | 60 | 289 | 221 | 1024 | 30720 | %C A352314 | 480 | 510 | 510 | 144 | 289 | 17 | 1500 | 108000 | %C A352314 | 296 | 296 | 560 | 140/3 | 1369/3 | 407 | 1152 | 26880 | %C A352314 ................................................................................ %C A352314 Observations coming from the previous table: %C A352314 There exist two families of triangles, %C A352314 1) triangle ABC is isosceles with a = b < c or a < b = c. %C A352314 In this case, r and R are rational integers with same denominator = 1 or 3, and the area A of this triangle is a term of A231174. %C A352314 Note that besides, if d is prime, d divides the two equal sides of the isosceles triangle, and also, there are these two possibilities: %C A352314 -> d^2 = R and then r = (R-1)/2, or %C A352314 -> d^2 = 3R and then r = (R-3)/2. %C A352314 2) triangle ABC is scalene with a < b < c. %C A352314 In this case, r and R are both quadratic of the form k*sqrt(3)/3. %H A352314 Eric Weisstein's World of Mathematics, Circumcircle. %H A352314 Eric Weisstein's World of Mathematics, Circumradius. %H A352314 Eric Weisstein's World of Mathematics, Euler Triangle Formula. %H A352314 Eric Weisstein's World of Mathematics, Incircle. %H A352314 Eric Weisstein's World of Mathematics, Inradius. %e A352314 The table begins: %e A352314 10, 10, 16; %e A352314 40, 40, 48; %e A352314 16, 49, 55; %e A352314 80, 104, 104; %e A352314 15, 169, 176; %e A352314 130, 130, 240; %e A352314 231, 361, 416; %e A352314 ......... %e A352314 For first triple (10, 10, 16), s = (10+10+16)/2 = 18, A = 48, r = 48/18 = 8/3, R = 10*10*16/4*48 = 25/3, and d = sqrt(25/3 * 9/3) = 5. We observe that gcd(10, 10, 16) = 2, but that gcd(10, 10, 16, 5) = 1, in fact for triple (5, 5, 8) with gcd(5, 5, 8) = 1, OI should be 5/2. %Y A352314 Cf. A231174, A350378, A350379, A352315. %K A352314 nonn,tabf %O A352314 1,1 %A A352314 _Bernard Schott_, Mar 11 2022 %E A352314 More terms from _Jinyuan Wang_, Mar 12 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE