# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a351772 Showing 1-1 of 1 %I A351772 #5 Feb 19 2022 04:44:38 %S A351772 1,2,8,51,442,4534,51182,613806,7675397,98971497,1306630823, %T A351772 17575262387,240012293969,3319086310532,46386983964844, %U A351772 654176372802786,9297814382343636,133052398800475776,1915431497096942109,27721644693710659258 %N A351772 G.f. A(x) = Sum_{n>=0} x^n*F(x)^n/(1 - x*F(x)^(n+4)), where F(x) is the g.f. of A350117. %F A351772 The g.f. A(x) of this sequence can be determined from the g.f. F(x) of A350117 as follows. %F A351772 (1) A(x) = Sum_{n>=0} x^n*F(x)^(1*n) / (1 - x*F(x)^(1*n+4)); %F A351772 (2) A(x) = Sum_{n>=0} x^n*F(x)^(2*n) / (1 - x*F(x)^(3*n+3)); %F A351772 (3) A(x) = Sum_{n>=0} x^n*F(x)^(3*n) / (1 - x*F(x)^(3*n+2)); %F A351772 (4) A(x) = Sum_{n>=0} x^n*F(x)^(4*n) / (1 - x*F(x)^(1*n+1)); %F A351772 (5) A(x) = Sum_{n>=0} x^(2*n) * F(x)^(n^2+5*n) * (1 - x^2*F(x)^(2*n+5)) / ((1 - x*F(x)^(n+1))*(1 - x*F(x)^(n+4))), %F A351772 (6) A(x) = Sum_{n>=0} x^(2*n) * F(x)^(3*n^2+5*n) * (1 - x^2*F(x)^(6*n+5)) / ((1 - x*F(x)^(3*n+2))*(1 - x*F(x)^(3*n+3))); %F A351772 see the example section for the series expansion of F(x). %e A351772 G.f.: A(x) = 1 + 2*x + 8*x^2 + 51*x^3 + 442*x^4 + 4534*x^5 + 51182*x^6 + 613806*x^7 + 7675397*x^8 + 98971497*x^9 + 1306630823*x^10 + ... %e A351772 such that %e A351772 (1) A(x) = 1/(1 - x*F(x)^4) + x*F(x)^1/(1 - x*F(x)^5) + x^2*F(x)^2/(1 - x*F(x)^6) + x^3*F(x)^3/(1 - x*F(x)^7) + x^4*F(x)^4/(1 - x*F(x)^8) + ... %e A351772 (2) A(x) = 1/(1 - x*F(x)^3) + x*F(x)^2/(1 - x*F(x)^6) + x^2*F(x)^4/(1 - x*F(x)^9) + x^3*F(x)^6/(1 - x*F(x)^12) + x^4*F(x)^8/(1 - x*F(x)^15) + ... %e A351772 (3) A(x) = 1/(1 - x*F(x)^2) + x*F(x)^3/(1 - x*F(x)^5) + x^2*F(x)^6/(1 - x*F(x)^8) + x^3*F(x)^9/(1 - x*F(x)^11) + x^4*F(x)^12/(1 - x*F(x)^14) + ... %e A351772 (4) A(x) = 1/(1 - x*F(x)^1) + x*F(x)^4/(1 - x*F(x)^2) + x^2*F(x)^8/(1 - x*F(x)^3) + x^3*F(x)^12/(1 - x*F(x)^4) + x^4*F(x)^16/(1 - x*F(x)^5) + ... %e A351772 where %e A351772 F(x) = 1 + x + 5*x^2 + 43*x^3 + 443*x^4 + 5009*x^5 + 60104*x^6 + 751778*x^7 + 9696036*x^8 + 128037209*x^9 + 1722632206*x^10 + ... + A350117(n)*x^n + ... %o A351772 (PARI) {a(n) = my(F=[1, 1, 0]); for(i=0, n, F=concat(F, 0); %o A351772 A1 = sum(m=0, #F, x^m*Ser(F)^(2*m)/(1 - x*Ser(F)^(3*m+3)) ); %o A351772 A2 = sum(m=0, #F, x^m*Ser(F)^(4*m)/(1 - x*Ser(F)^(1*m+1)) ); %o A351772 F[#F-1] = polcoeff((A1 - A2)/2, #F); ); polcoeff(A1,n)} %o A351772 for(n=0, 30, print1(a(n), ", ")) %o A351772 (PARI) {a(n) = my(F=[1, 1, 0]); for(i=0, n, F=concat(F, 0); %o A351772 A1 = sum(m=0, #F, x^m*Ser(F)^(3*m)/(1 - x*Ser(F)^(3*m+2)) ); %o A351772 A2 = sum(m=0, #F, x^m*Ser(F)^(1*m)/(1 - x*Ser(F)^(1*m+4)) ); %o A351772 F[#F-1] = polcoeff((A1 - A2)/2, #F); ); polcoeff(A1,n)} %o A351772 for(n=0, 30, print1(a(n), ", ")) %Y A351772 Cf. A350117. %K A351772 nonn %O A351772 0,2 %A A351772 _Paul D. Hanna_, Feb 18 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE