# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a351643 Showing 1-1 of 1 %I A351643 #10 Jan 28 2023 22:07:47 %S A351643 0,0,1,3,12,28,81,177,410,906,1869,4001,8094,16032,32355,62499,120078, %T A351643 227880,436743,805797,1487920,2751618,5017143,9063625,16153560, %U A351643 29066676,51334289,90784671,157941132,275244344,478874505,823848357,1412686722,2400778830,4091929101 %N A351643 Number of length n word structures with all distinct runs using exactly 3 symbols. %C A351643 Permuting the symbols will not change the structure. %H A351643 Andrew Howroyd, Table of n, a(n) for n = 1..1000 %e A351643 The a(3) = 1 word is 123. %e A351643 The a(4) = 3 words are 1123, 1223, 1233. %e A351643 The a(5) = 12 words are 11123, 11213, 11223, 11231, 11233, 12113, 12223, 12232, 12233, 12311, 12322, 12333. %o A351643 (PARI) \\ See A351641 for R, S. %o A351643 seq(n)={my(q=S(n), c=3); sum(k=1, c, R(q^k-1)*binomial(c, k)*(-1)^(3-k))/c!} %Y A351643 Column k=3 of A351641. %Y A351643 Cf. A351644. %K A351643 nonn %O A351643 1,4 %A A351643 _Andrew Howroyd_, Feb 16 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE