# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a350442 Showing 1-1 of 1 %I A350442 #19 Jan 31 2022 06:48:34 %S A350442 8,15,50,552,668,1011,1163,1215,2199,4230,7231,34310 %N A350442 Numbers m such that 8^m reversed is prime. %C A350442 From _Bernard Schott_, Jan 30 2022: (Start) %C A350442 If k is a term, then u = 3*k is a term of A057708, because 8^k = 2^(3k). %C A350442 If k is an even term, then t = 3*k/2 is a term of A350441, because 8^k = 4^(3k/2). First examples: k = 8, 50, 552, 668, 4230, 34310, ... and corresponding t = 12, 75, 828, 1002, 6345, 51465, ... (End) %t A350442 Select[Range[2200], PrimeQ[IntegerReverse[8^#]] &] (* _Amiram Eldar_, Dec 31 2021 *) %o A350442 (PARI) isok(m) = isprime(fromdigits(Vecrev(digits(8^m)))) %o A350442 (Python) %o A350442 from sympy import isprime %o A350442 m = 8 %o A350442 for n in range (1, 2000): %o A350442 if isprime(int(str(m)[::-1])): %o A350442 print(n) %o A350442 m *= 8 %Y A350442 Cf. A059003, A071586. %Y A350442 Cf. Numbers m such that k^m reversed is prime: A057708 (k=2), A350441 (k=4), A058993 (k=5), A058994 (k=7), A058995 (k=13). %K A350442 nonn,base,more %O A350442 1,1 %A A350442 _Mohammed Yaseen_, Dec 31 2021 %E A350442 a(10)-a(12) from _Amiram Eldar_, Dec 31 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE