# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a358223 Showing 1-1 of 1 %I A358223 #15 Oct 23 2023 02:02:17 %S A358223 1,3,3,6,3,9,3,11,6,9,3,18,3,9,9,18,3,18,3,18,9,9,3,33,6,9,11,18,3,27, %T A358223 3,29,9,9,9,36,3,9,9,33,3,27,3,18,18,9,3,54,6,18,9,18,3,33,9,33,9,9,3, %U A358223 54,3,9,18,42,9,27,3,18,9,27,3,66,3,9,18,18,9,27,3,54,18,9,3,54,9,9,9,33,3,54 %N A358223 Inverse Möbius transform of A181819, prime shadow function. %C A358223 Multiplicative and dependent only on the prime signature (A046523) because also A181819 is. %H A358223 Michael De Vlieger, Table of n, a(n) for n = 1..16384 %H A358223 Index entries for sequences computed from exponents in factorization of n. %F A358223 a(n) = Sum_{d|n} A181819(d). %F A358223 Multiplicative with a(p^e) = 1 + Sum_{k=1..e} prime(k) = A014284(e+1). - _Amiram Eldar_, Oct 23 2023 %t A358223 f[n_] := f[n] = Times @@ Prime@ FactorInteger[n][[All, -1]]; Array[DivisorSum[#, f] - 1 &, 90] (* _Michael De Vlieger_, Nov 30 2022 *) %o A358223 (PARI) %o A358223 A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2]))); %o A358223 A358223(n) = sumdiv(n,d,A181819(d)); %Y A358223 Cf. A014284, A046523, A181819. %K A358223 nonn,mult %O A358223 1,2 %A A358223 _Antti Karttunen_, Nov 30 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE