# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a356783 Showing 1-1 of 1 %I A356783 #22 Sep 26 2022 21:59:07 %S A356783 1,1,2,6,17,50,163,525,1770,6066,21154,74787,267371,965233,3513029, %T A356783 12877687,47499333,176167086,656568385,2457710598,9236079055, %U A356783 34832753818,131792634266,500121476517,1902979982421,7258942377746,27752992782498,106333425162358,408213503595652 %N A356783 Coefficients in the power series A(x) such that: 1 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n. %C A356783 Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1). %H A356783 Paul D. Hanna, Table of n, a(n) for n = 0..400 %F A356783 G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations. %F A356783 (1) 1 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n. %F A356783 (2) x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ). %F A356783 (3) -x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n. %F A356783 (4) -A(x)^3 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n. %F A356783 (5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n. %F A356783 (6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n. %e A356783 G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 17*x^4 + 50*x^5 + 163*x^6 + 525*x^7 + 1770*x^8 + 6066*x^9 + 21154*x^10 + 74787*x^11 + 267371*x^12 + ... %e A356783 such that %e A356783 1 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ... %e A356783 also %e A356783 -A(x)^3 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ... %o A356783 (PARI) {a(n) = my(A=[1]); for(i=0,n, A = concat(A,0); %o A356783 A[#A] = polcoeff(1 - sum(n=-#A\2-1,#A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n ),#A-2); );A[n+1]} %o A356783 for(n=0,30, print1(a(n),", ")) %Y A356783 Cf. A357151, A357152, A357153, A357154, A357155. %Y A356783 Cf. A357200, A357400, A357402, A357403, A357404, A357405. %K A356783 nonn %O A356783 0,3 %A A356783 _Paul D. Hanna_, Sep 15 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE