# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a341592 Showing 1-1 of 1 %I A341592 #18 Nov 01 2024 05:15:27 %S A341592 1,1,1,1,1,2,1,0,1,2,1,1,1,2,2,0,1,1,1,2,2,2,1,1,1,2,0,2,1,4,1,0,2,2, %T A341592 2,1,1,2,2,1,1,4,1,2,1,2,1,0,1,1,2,2,1,0,2,1,2,2,1,3,1,2,1,0,2,4,1,2, %U A341592 2,4,1,0,1,2,1,2,2,4,1,1,0,2,1,3,2,2,2 %N A341592 Number of squarefree superior divisors of n. %C A341592 We define a divisor d|n to be superior if d >= n/d. Superior divisors are counted by A038548 and listed by A161908. %H A341592 Amiram Eldar, Table of n, a(n) for n = 1..10000 %e A341592 The strictly superior squarefree divisors (columns) of selected n: %e A341592 1 6 8 30 60 210 420 630 1050 2310 4620 6930 %e A341592 ------------------------------------------------------ %e A341592 1 3 . 6 10 15 21 30 35 55 70 105 %e A341592 6 10 15 21 30 35 42 66 77 110 %e A341592 15 30 30 35 42 70 70 105 154 %e A341592 30 35 42 70 105 77 110 165 %e A341592 42 70 105 210 105 154 210 %e A341592 70 105 210 110 165 231 %e A341592 105 210 154 210 330 %e A341592 210 165 231 385 %e A341592 210 330 462 %e A341592 231 385 770 %e A341592 330 462 1155 %e A341592 385 770 2310 %e A341592 462 1155 %e A341592 770 2310 %e A341592 1155 %e A341592 2310 %p A341592 with(numtheory): %p A341592 a := n -> nops(select(d -> d*d >= n and issqrfree(d), divisors(n))): %p A341592 seq(a(n), n = 1..88); # _Peter Luschny_, Feb 20 2021 %t A341592 Table[Length[Select[Divisors[n],SquareFreeQ[#]&&#>=n/#&]],{n,100}] %o A341592 (PARI) a(n) = sumdiv(n, d, d^2 >= n && issquarefree(d)); \\ _Amiram Eldar_, Nov 01 2024 %Y A341592 Positions of zeros are A059172. %Y A341592 The inferior version is A333749. %Y A341592 The version for prime instead of squarefree divisors is A341591. %Y A341592 The version for prime powers instead of squarefree divisors is A341593. %Y A341592 The strictly superior case is A341595. %Y A341592 The version for odd instead of squarefree divisors is A341675. %Y A341592 A001221 counts prime divisors, with sum A001414. %Y A341592 A033677 selects the smallest superior divisor. %Y A341592 A038548 counts superior (or inferior) divisors. %Y A341592 A056924 counts strictly superior (or strictly inferior) divisors. %Y A341592 A161908 lists superior divisors. %Y A341592 A207375 lists central divisors. %Y A341592 - Inferior: A033676, A063962, A066839, A069288, A161906, A217581, A333750. %Y A341592 - Superior: A051283, A063538, A063539, A070038, A116882, A116883, A341676. %Y A341592 - Strictly Inferior: A060775, A333805, A333806, A341596, A341674. %Y A341592 - Strictly Superior: A048098, A064052 A140271, A238535, A341594, A341642, A341643, A341644, A341645, A341646, A341673. %Y A341592 Cf. A000005, A000203, A001222, A001248, A006530, A020639, A112798. %K A341592 nonn %O A341592 1,6 %A A341592 _Gus Wiseman_, Feb 19 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE