# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a347462 Showing 1-1 of 1 %I A347462 #6 Oct 27 2021 22:22:58 %S A347462 1,1,2,3,4,6,8,11,13,17,22,28,33,42,51,59,69,84,100,117,137,163,191, %T A347462 222,256,290,332,378,429,489,564,643,729,819,929,1040,1167,1313,1473, %U A347462 1647,1845,2045,2272,2521,2785,3076,3398,3744,4115,4548,5010,5524,6086 %N A347462 Number of distinct possible reverse-alternating products of integer partitions of n. %C A347462 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence. %e A347462 Partitions representing each of the a(7) = 11 reverse-alternating products: %e A347462 (7) -> 7 %e A347462 (61) -> 1/6 %e A347462 (52) -> 2/5 %e A347462 (511) -> 5 %e A347462 (43) -> 3/4 %e A347462 (421) -> 2 %e A347462 (4111) -> 1/4 %e A347462 (331) -> 1 %e A347462 (322) -> 3 %e A347462 (3211) -> 2/3 %e A347462 (2221) -> 1/2 %t A347462 revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347462 Table[Length[Union[revaltprod/@IntegerPartitions[n]]],{n,0,30}] %Y A347462 The version for non-reverse alternating sum instead of product is A004526. %Y A347462 Counting only integers gives A028310, non-reverse A347707. %Y A347462 The version for factorizations is A038548, non-reverse A347460. %Y A347462 The non-reverse version is A347461. %Y A347462 A000041 counts partitions. %Y A347462 A027187 counts partitions of even length. %Y A347462 A027193 counts partitions of odd length. %Y A347462 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A347462 A108917 counts knapsack partitions, ranked by A299702. %Y A347462 A122768 counts distinct submultisets of partitions. %Y A347462 A126796 counts complete partitions. %Y A347462 A293627 counts knapsack factorizations by sum. %Y A347462 A301957 counts distinct subset-products of prime indices. %Y A347462 A304792 counts subset-sums of partitions, positive A276024, strict A284640. %Y A347462 A304793 counts distinct positive subset-sums of prime indices. %Y A347462 A325534 counts separable partitions, ranked by A335433. %Y A347462 A325535 counts inseparable partitions, ranked by A335448. %Y A347462 Cf. A000070, A001055, A002033, A002219, A028983, A119620, A325768, A345926, A347443, A347444, A347445, A347446. %K A347462 nonn %O A347462 0,3 %A A347462 _Gus Wiseman_, Oct 06 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE