# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a347447 Showing 1-1 of 1 %I A347447 #8 Sep 27 2021 07:55:36 %S A347447 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1, %T A347447 1,2,1,1,1,2,1,2,1,1,1,1,1,3,1,1,1,1,1,2,1,2,1,1,1,4,1,1,1,2,1,2,1,1, %U A347447 1,2,1,4,1,1,1,1,1,2,1,3,1,1,1,4,1,1,1 %N A347447 Number of strict factorizations of n with alternating product > 1. %C A347447 A strict factorization of n is an increasing sequence of distinct positive integers > 1 with product n. %C A347447 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %C A347447 All such factorizations must have odd length. %e A347447 The a(720) = 30 factorizations: %e A347447 (2*4*90) (3*4*60) (4*5*36) (5*6*24) (6*8*15) (8*9*10) (720) %e A347447 (2*5*72) (3*5*48) (4*6*30) (5*8*18) (6*10*12) %e A347447 (2*6*60) (3*6*40) (4*9*20) (5*9*16) %e A347447 (2*8*45) (3*8*30) (4*10*18) %e A347447 (2*9*40) (3*10*24) (4*12*15) %e A347447 (2*10*36) (3*12*20) %e A347447 (2*12*30) (3*15*16) %e A347447 (2*15*24) %e A347447 (2*18*20) %e A347447 (2*3*120) %e A347447 (2*3*4*5*6) %t A347447 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A347447 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347447 Table[Length[Select[facs[n],UnsameQ@@#&&altprod[#]>1&]],{n,100}] %Y A347447 Allowing any alternating product gives A045778. %Y A347447 The reverse additive version (or restriction to powers of 2) is A067659. %Y A347447 The non-strict version is A339890. %Y A347447 Allowing equal parts and any alternating product < 1 gives A347440. %Y A347447 Allowing equal parts and any alternating product >= 1 gives A347456. %Y A347447 A046099 counts factorizations with no alternating permutations. %Y A347447 A273013 counts ordered factorizations of n^2 with alternating product 1. %Y A347447 A339846 counts even-length factorizations. %Y A347447 A347437 counts factorizations with integer alternating product. %Y A347447 A347441 counts odd-length factorizations with integer alternating product. %Y A347447 A347460 counts possible alternating products of factorizations. %Y A347447 Cf. A000009, A005117, A030059, A119620, A119899, A330972, A344608, A347438, A347439, A347442, A347463. %K A347447 nonn %O A347447 1,24 %A A347447 _Gus Wiseman_, Sep 23 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE