# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a347015 Showing 1-1 of 1 %I A347015 #18 Sep 10 2023 08:39:12 %S A347015 1,1,5,42,498,7644,144156,3225648,83536008,2457701928,80970232104, %T A347015 2953056534768,118112744060208,5140622709134496,241863782829704928, %U A347015 12232551538417012992,661818290353375962240,38140594162828447248000,2332567001993176540206720,150880256846462633823648000 %N A347015 Expansion of e.g.f. 1 / (1 + 3 * log(1 - x))^(1/3). %H A347015 Seiichi Manyama, Table of n, a(n) for n = 0..372 %F A347015 a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A007559(k). %F A347015 a(n) ~ n! * exp(n/3) / (Gamma(1/3) * 3^(1/3) * n^(2/3) * (exp(1/3) - 1)^(n + 1/3)). - _Vaclav Kotesovec_, Aug 14 2021 %F A347015 a(0) = 1; a(n) = Sum_{k=1..n} (3 - 2*k/n) * (k-1)! * binomial(n,k) * a(n-k). - _Seiichi Manyama_, Sep 09 2023 %p A347015 g:= proc(n) option remember; `if`(n<2, 1, (3*n-2)*g(n-1)) end: %p A347015 a:= n-> add(abs(Stirling1(n, k))*g(k), k=0..n): %p A347015 seq(a(n), n=0..19); # _Alois P. Heinz_, Aug 10 2021 %t A347015 nmax = 19; CoefficientList[Series[1/(1 + 3 Log[1 - x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]! %t A347015 Table[Sum[Abs[StirlingS1[n, k]] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 19}] %Y A347015 Cf. A007559, A007840, A346978, A346982, A347016. %Y A347015 Cf. A354263. %K A347015 nonn %O A347015 0,3 %A A347015 _Ilya Gutkovskiy_, Aug 10 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE