# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a333195 Showing 1-1 of 1 %I A333195 #9 Jun 20 2020 01:11:52 %S A333195 8,16,24,27,30,32,40,48,54,56,60,64,72,80,81,88,96,104,105,108,110, %T A333195 112,120,125,128,135,136,144,150,152,160,162,168,176,184,189,192,200, %U A333195 208,210,216,220,224,232,238,240,243,248,250,256,264,270,272,273,280,288 %N A333195 Numbers with three consecutive prime indices in arithmetic progression. %C A333195 Also numbers whose first differences of prime indices do not form an anti-run, meaning there are adjacent equal differences. %C A333195 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A333195 Wikipedia, Arithmetic progression %e A333195 The sequence of terms together with their prime indices begins: %e A333195 8: {1,1,1} 105: {2,3,4} %e A333195 16: {1,1,1,1} 108: {1,1,2,2,2} %e A333195 24: {1,1,1,2} 110: {1,3,5} %e A333195 27: {2,2,2} 112: {1,1,1,1,4} %e A333195 30: {1,2,3} 120: {1,1,1,2,3} %e A333195 32: {1,1,1,1,1} 125: {3,3,3} %e A333195 40: {1,1,1,3} 128: {1,1,1,1,1,1,1} %e A333195 48: {1,1,1,1,2} 135: {2,2,2,3} %e A333195 54: {1,2,2,2} 136: {1,1,1,7} %e A333195 56: {1,1,1,4} 144: {1,1,1,1,2,2} %e A333195 60: {1,1,2,3} 150: {1,2,3,3} %e A333195 64: {1,1,1,1,1,1} 152: {1,1,1,8} %e A333195 72: {1,1,1,2,2} 160: {1,1,1,1,1,3} %e A333195 80: {1,1,1,1,3} 162: {1,2,2,2,2} %e A333195 81: {2,2,2,2} 168: {1,1,1,2,4} %e A333195 88: {1,1,1,5} 176: {1,1,1,1,5} %e A333195 96: {1,1,1,1,1,2} 184: {1,1,1,9} %e A333195 104: {1,1,1,6} 189: {2,2,2,4} %t A333195 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A333195 Select[Range[100],MatchQ[Differences[primeMS[#]],{___,x_,x_,___}]&] %Y A333195 Anti-run compositions are counted by A003242. %Y A333195 Normal anti-runs of length n + 1 are counted by A005649. %Y A333195 Strict partitions with equal differences are A049980. %Y A333195 Partitions with equal differences are A049988. %Y A333195 These are the Heinz numbers of the partitions *not* counted by A238424. %Y A333195 Permutations avoiding triples in arithmetic progression are A295370. %Y A333195 Strict partitions avoiding triples in arithmetic progression are A332668. %Y A333195 Anti-run compositions are ranked by A333489. %Y A333195 Cf. A006560, A007862, A238423, A307824, A325328, A325849, A325852. %K A333195 nonn %O A333195 1,1 %A A333195 _Gus Wiseman_, Mar 29 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE