# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a332340 Showing 1-1 of 1 %I A332340 #6 Feb 18 2020 04:48:05 %S A332340 1,1,1,3,3,4,9,11,13,23,53,78,120,207,357,707,1183,2030,3558,6229, %T A332340 10868 %N A332340 Number of widely alternately co-strongly normal compositions of n. %C A332340 An integer partition is widely alternately co-strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) with weakly increasing run-length (co-strong) which, if reversed, are themselves a widely alternately co-strongly normal partition. %e A332340 The a(1) = 1 through a(8) = 13 compositions: %e A332340 (1) (11) (12) (121) (122) (123) (1213) (1232) %e A332340 (21) (211) (212) (132) (1231) (1322) %e A332340 (111) (1111) (1211) (213) (1312) (2123) %e A332340 (11111) (231) (1321) (2132) %e A332340 (312) (2122) (2312) %e A332340 (321) (2131) (2321) %e A332340 (1212) (2311) (3122) %e A332340 (2121) (3121) (3212) %e A332340 (111111) (3211) (12131) %e A332340 (12121) (13121) %e A332340 (1111111) (21212) %e A332340 (122111) %e A332340 (11111111) %e A332340 For example, starting with the composition y = (122111) and repeatedly taking run-lengths and reversing gives (122111) -> (321) -> (111). All of these are normal with weakly increasing run-lengths and the last is all 1's, so y is counted under a(8). %t A332340 totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]]; %t A332340 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],totnQ]],{n,0,10}] %Y A332340 Normal compositions are A107429. %Y A332340 Compositions with normal run-lengths are A329766. %Y A332340 The Heinz numbers of the case of partitions are A332290. %Y A332340 The case of partitions is A332289. %Y A332340 The total (instead of alternating) version is A332337. %Y A332340 Not requiring normality gives A332338. %Y A332340 The strong version is this same sequence. %Y A332340 The narrow version is a(n) + 1 for n > 1. %Y A332340 Cf. A181819, A317245, A317491, A329744, A329741, A329746, A332278, A332279, A332292. %K A332340 nonn,more %O A332340 0,4 %A A332340 _Gus Wiseman_, Feb 17 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE