# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a332331 Showing 1-1 of 1 %I A332331 #10 Feb 12 2020 19:48:51 %S A332331 4,6,8,6,5,1,7,6,6,3,7,9,5,7,5,7,4,4,6,5,7,0,0,4,8,9,8,3,7,9,0,7,7,5, %T A332331 0,6,6,8,2,7,1,2,2,0,1,7,5,9,6,6,4,5,8,3,2,3,1,0,5,8,7,1,3,7,5,3,7,1, %U A332331 4,0,7,8,7,6,1,6,8,6,8,2,0,3,9,2,5,1 %N A332331 Decimal expansion of the next-to-least positive zero of the 12th Maclaurin polynomial of cos x. %C A332331 The Maclaurin polynomial p(2n,x) of cos x is 1 - x^2/2! + x^4/4! + ... + (-1)^n x^(2n)/(2n)!. %C A332331 Let z(n) be the next-to-least positive zero of p(2n,x) if there is such a zero. The limit of z(n) is 3 Pi/2 = 4.7123889..., as in A197723. %e A332331 Next-to-least positive zero = 4.6865176637957574465700489837907750... %t A332331 z = 150; p[n_, x_] := Normal[Series[Cos[x], {x, 0, n}]] %t A332331 t = x /. NSolve[p[12, x] == 0, x, z][[8]] %t A332331 u = RealDigits[t][[1]] %t A332331 Plot[Evaluate[p[12, x]], {x, -1, 5}] %Y A332331 Cf. A197723, A332329, A332330. %K A332331 nonn,cons,easy %O A332331 1,1 %A A332331 _Clark Kimberling_, Feb 11 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE