# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a332336 Showing 1-1 of 1 %I A332336 #6 Feb 16 2020 07:55:12 %S A332336 1,1,2,4,4,4,10,10,13,24,55,78,117,206,353,698,1175,2014,3539,6210, %T A332336 10831 %N A332336 Number of narrowly totally strongly normal compositions of n. %C A332336 A sequence is narrowly totally strongly normal if either it is empty, a singleton (narrow), or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) that are themselves a narrowly totally strongly normal sequence. %C A332336 A composition of n is a finite sequence of positive integers summing to n. %F A332336 For n > 1, a(n) = A332337(n) + 1. %e A332336 The a(1) = 1 through a(8) = 13 compositions: %e A332336 (1) (2) (3) (4) (5) (6) (7) (8) %e A332336 (11) (12) (112) (212) (123) (1213) (1232) %e A332336 (21) (121) (221) (132) (1231) (2123) %e A332336 (111) (1111) (11111) (213) (1312) (2132) %e A332336 (231) (1321) (2312) %e A332336 (312) (2131) (2321) %e A332336 (321) (3121) (3212) %e A332336 (1212) (11221) (12131) %e A332336 (2121) (12121) (13121) %e A332336 (111111) (1111111) (21212) %e A332336 (22112) %e A332336 (111221) %e A332336 (11111111) %e A332336 For example, starting with (22112) and repeated taking run-lengths gives (22112) -> (221) -> (21) -> (11) -> (2). The first four are normal with weakly decreasing run-lengths, and the last is a singleton, so (22112) is counted under a(8). %t A332336 tinQ[q_]:=Or[q=={},Length[q]==1,And[Union[q]==Range[Max[q]],GreaterEqual@@Length/@Split[q],tinQ[Length/@Split[q]]]]; %t A332336 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tinQ]],{n,0,10}] %Y A332336 Normal compositions are A107429. %Y A332336 The non-strong version is A332296. %Y A332336 The case of partitions is A332297. %Y A332336 The co-strong version is A332336 (this sequence). %Y A332336 The wide version is A332337. %Y A332336 Cf. A025487, A316496, A317081, A317245, A317256, A317491, A329744, A332279, A332291, A332292, A332338, A332340. %K A332336 nonn,more %O A332336 0,3 %A A332336 _Gus Wiseman_, Feb 15 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE