# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a331968 Showing 1-1 of 1 %I A331968 #86 Feb 27 2023 11:16:21 %S A331968 1,3,7,11,17,24,33,42,53,64,77,92,107,123,142,162,182 %N A331968 Maximum number of unit squares of a snake-like polyomino in an n X n square box. %C A331968 These are similar to the snake-in-the-box problem for the hypercube Q_n (See A099155). %C A331968 The number of solutions is given by A331986(n). %C A331968 Equivalently, a(n) is the maximum number of vertices in a path without chords in the n X n grid graph. A path without chords is an induced subgraph that is a path. %C A331968 These numbers are part of the result of a computer program that counts the snake-like polyominoes in a rectangle of given size b X h by their length. %C A331968 a(16) >= 161. %H A331968 Nikolai Beluhov, Snake paths in king and knight graphs, arXiv:2301.01152 [math.CO], 2023. %H A331968 Alain Goupil, Illustration of initial terms %H A331968 Eric Weisstein's World of Mathematics, Grid Graph %F A331968 a(n) >= A047838(n+1). %F A331968 For n > 2: a(n) >= 2*floor(n/3)*(2n-3*floor(n/3)-2)+5. - _Elijah Beregovsky_, May 11 2020 %F A331968 a(n) <= (2*n*(n+1)-1)/3. - _Elijah Beregovsky_, Nov 09 2020 %F A331968 a(n) = 2*n^2/3 + O(n) (Beluhov 2023). - _Pontus von Brömssen_, Jan 30 2023 %e A331968 For n=4, the maximum length of a snake-like polyomino that fits in a square of side 4 is 11 and there are 84 such snakes. %e A331968 Maximum-length snakes for n = 1 to 4 are shown below. %e A331968 X X X X X X X X X X %e A331968 X X X X X %e A331968 X X X X %e A331968 X X X %Y A331968 Main diagonal of A360917. %Y A331968 Cf. A099155, A047838, A122224, A331986, A332920, A332921, A357357, A357359. %K A331968 nonn,hard,more %O A331968 1,2 %A A331968 _Alain Goupil_, Feb 02 2020 %E A331968 a(15) from _Andrew Howroyd_, Feb 04 2020 %E A331968 a(16)-a(17) from _Yi Yang_, Oct 03 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE