# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a336170 Showing 1-1 of 1 %I A336170 #22 Jul 13 2020 04:53:13 %S A336170 1,23,2401,347279,58370761,10693893503,2071837562929,417449585719343, %T A336170 86587926575712937,18366152017597820303,3965385492963153556441, %U A336170 868598410928920193676023,192552082030654661729957401,43117650276328970463683450639,9738695910884616220689842598481 %N A336170 a(n) = Sum_{k=0..n} (-1)^(n-k) * (n+3*k)!/((n-k)! * k!^4). %C A336170 Diagonal of the rational function 1 / (1 - Sum_{k=1..4} x_k + Product_{k=1..4} x_k). %H A336170 Seiichi Manyama, Table of n, a(n) for n = 0..418 %F A336170 G.f.: Sum_{k>=0} (4*k)!/k!^4 * x^k / (1+x)^(4*k+1). %t A336170 a[n_] := Sum[(-1)^(n - k)*(n + 3*k)!/((n - k)!*k!^4), {k, 0, n}]; Array[a, 15, 0] (* _Amiram Eldar_, Jul 10 2020 *) %o A336170 (PARI) {a(n) = sum(k=0, n, (-1)^(n-k)*(n+3*k)!/((n-k)!*k!^4))} %o A336170 (PARI) N=20; x='x+O('x^N); Vec(sum(k=0, N, (4*k)!/k!^4*x^k/(1+x)^(4*k+1))) %Y A336170 Column k=4 of A336169. %Y A336170 Cf. A082488. %K A336170 nonn %O A336170 0,2 %A A336170 _Seiichi Manyama_, Jul 10 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE