# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a335922 Showing 1-1 of 1 %I A335922 #22 Apr 26 2022 02:58:40 %S A335922 0,1,7,97,6031,8760337,8245932762607,3508518207942911995940881, %T A335922 311594265746788494170059418351454897488270152687 %N A335922 Total number of internal nodes in all binary search trees of height n. %C A335922 Empty external nodes are counted in determining the height of a search tree. %H A335922 Alois P. Heinz, Table of n, a(n) for n = 0..12 %H A335922 Wikipedia, Binary search tree %H A335922 Index entries for sequences related to rooted trees %H A335922 Index entries for sequences related to trees %F A335922 a(n) = Sum_{k=n..2^n-1} k * A335919(k,n) = Sum_{k=n..2^n-1} k * A335920(k,n). %e A335922 a(2) = 7 = 2 + 3 + 2: %e A335922 . %e A335922 2 2 1 %e A335922 / \ / \ / \ %e A335922 1 o 1 3 o 2 %e A335922 / \ ( ) ( ) / \ %e A335922 o o o o o o o o %e A335922 . %p A335922 b:= proc(n, h) option remember; `if`(n=0, 1, `if`(n<2^h, %p A335922 add(b(j-1, h-1)*b(n-j, h-1), j=1..n), 0)) %p A335922 end: %p A335922 T:= (n, k)-> b(n, k)-`if`(k>0, b(n, k-1), 0): %p A335922 a:= k-> add(T(n, k)*n, n=k..2^k-1): %p A335922 seq(a(n), n=0..10); %t A335922 b[n_, h_] := b[n, h] = If[n == 0, 1, If[n < 2^h, %t A335922 Sum[b[j - 1, h - 1]*b[n - j, h - 1], {j, 1, n}], 0]]; %t A335922 T[n_, k_] := b[n, k] - If[k > 0, b[n, k - 1], 0]; %t A335922 a[k_] := Sum[T[n, k]*n, {n, k, 2^k - 1}]; %t A335922 Table[a[n], {n, 0, 10}] (* _Jean-François Alcover_, Apr 26 2022, after _Alois P. Heinz_ *) %Y A335922 Cf. A317012, A335919, A335920, A335921. %K A335922 nonn %O A335922 0,3 %A A335922 _Alois P. Heinz_, Jun 29 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE