# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a335922
Showing 1-1 of 1
%I A335922 #22 Apr 26 2022 02:58:40
%S A335922 0,1,7,97,6031,8760337,8245932762607,3508518207942911995940881,
%T A335922 311594265746788494170059418351454897488270152687
%N A335922 Total number of internal nodes in all binary search trees of height n.
%C A335922 Empty external nodes are counted in determining the height of a search tree.
%H A335922 Alois P. Heinz, Table of n, a(n) for n = 0..12
%H A335922 Wikipedia, Binary search tree
%H A335922 Index entries for sequences related to rooted trees
%H A335922 Index entries for sequences related to trees
%F A335922 a(n) = Sum_{k=n..2^n-1} k * A335919(k,n) = Sum_{k=n..2^n-1} k * A335920(k,n).
%e A335922 a(2) = 7 = 2 + 3 + 2:
%e A335922 .
%e A335922 2 2 1
%e A335922 / \ / \ / \
%e A335922 1 o 1 3 o 2
%e A335922 / \ ( ) ( ) / \
%e A335922 o o o o o o o o
%e A335922 .
%p A335922 b:= proc(n, h) option remember; `if`(n=0, 1, `if`(n<2^h,
%p A335922 add(b(j-1, h-1)*b(n-j, h-1), j=1..n), 0))
%p A335922 end:
%p A335922 T:= (n, k)-> b(n, k)-`if`(k>0, b(n, k-1), 0):
%p A335922 a:= k-> add(T(n, k)*n, n=k..2^k-1):
%p A335922 seq(a(n), n=0..10);
%t A335922 b[n_, h_] := b[n, h] = If[n == 0, 1, If[n < 2^h,
%t A335922 Sum[b[j - 1, h - 1]*b[n - j, h - 1], {j, 1, n}], 0]];
%t A335922 T[n_, k_] := b[n, k] - If[k > 0, b[n, k - 1], 0];
%t A335922 a[k_] := Sum[T[n, k]*n, {n, k, 2^k - 1}];
%t A335922 Table[a[n], {n, 0, 10}] (* _Jean-François Alcover_, Apr 26 2022, after _Alois P. Heinz_ *)
%Y A335922 Cf. A317012, A335919, A335920, A335921.
%K A335922 nonn
%O A335922 0,3
%A A335922 _Alois P. Heinz_, Jun 29 2020
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE