# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a321407 Showing 1-1 of 1 %I A321407 #8 Jan 17 2023 18:28:29 %S A321407 1,0,1,2,7,13,47,111,367,1057,3474,11116,38106,131235,470882,1720959, %T A321407 6472129,24860957,97779665,392642763,1610045000,6732768139, %U A321407 28699327441,124600601174,550684155992,2476019025827,11320106871951,52598300581495,248265707440448,1189855827112636,5787965846277749 %N A321407 Number of non-isomorphic multiset partitions of weight n with no constant parts. %C A321407 Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which every row has at least two nonzero entries. %C A321407 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %H A321407 Andrew Howroyd, Table of n, a(n) for n = 0..50 %e A321407 Non-isomorphic representatives of the a(2) = 1 through a(5) = 13 multiset partitions: %e A321407 {{1,2}} {{1,2,2}} {{1,1,2,2}} {{1,1,2,2,2}} %e A321407 {{1,2,3}} {{1,2,2,2}} {{1,2,2,2,2}} %e A321407 {{1,2,3,3}} {{1,2,2,3,3}} %e A321407 {{1,2,3,4}} {{1,2,3,3,3}} %e A321407 {{1,2},{1,2}} {{1,2,3,4,4}} %e A321407 {{1,2},{3,4}} {{1,2,3,4,5}} %e A321407 {{1,3},{2,3}} {{1,2},{1,2,2}} %e A321407 {{1,2},{2,3,3}} %e A321407 {{1,2},{3,4,4}} %e A321407 {{1,2},{3,4,5}} %e A321407 {{1,3},{2,3,3}} %e A321407 {{1,4},{2,3,4}} %e A321407 {{2,3},{1,2,3}} %o A321407 (PARI) %o A321407 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A321407 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A321407 K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))} %o A321407 S(q, t, k)={sum(j=1, #q, if(t%q[j]==0, q[j]))*vector(k,i,1)} %o A321407 a(n)={if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(t=1, n, subst(x*Ser(K(q, t, n\t)-S(q, t, n\t))/t, x, x^t) )), n)); s/n!)} \\ _Andrew Howroyd_, Jan 17 2023 %Y A321407 Cf. A001970, A007716, A050535, A055884, A120733, A317533, A320798, A320801, A320808, A321760. %K A321407 nonn %O A321407 0,4 %A A321407 _Gus Wiseman_, Nov 29 2018 %E A321407 Terms a(11) and beyond from _Andrew Howroyd_, Jan 17 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE