# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a329869 Showing 1-1 of 1 %I A329869 #4 Nov 24 2019 10:00:52 %S A329869 0,1,2,1,2,1,4,5,11,19,36,77,138,252,528,1072,2204,4634,9575,19732, %T A329869 40754 %N A329869 Number of compositions of n with runs-resistance equal to cuts-resistance minus 1. %C A329869 A composition of n is a finite sequence of positive integers summing to n. %C A329869 For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined to be the number of applications required to reach a singleton. %C A329869 For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word. %H A329869 Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003. %e A329869 The a(1) = 1 through a(9) = 19 compositions: %e A329869 1 2 3 4 5 6 7 8 9 %e A329869 11 22 33 11113 44 11115 %e A329869 11112 31111 11114 12222 %e A329869 21111 111211 41111 22221 %e A329869 112111 111122 51111 %e A329869 111311 111222 %e A329869 113111 111411 %e A329869 211112 114111 %e A329869 221111 211113 %e A329869 1111121 222111 %e A329869 1211111 311112 %e A329869 1111131 %e A329869 1111221 %e A329869 1112112 %e A329869 1121112 %e A329869 1221111 %e A329869 1311111 %e A329869 2111211 %e A329869 2112111 %e A329869 For example, the runs-resistance of (1221111) is 3 because we have: (1221111) -> (124) -> (111) -> (3), while the cuts-resistance is 4 because we have: (1221111) -> (2111) -> (11) -> (1) -> (), so (1221111) is counted under a(9). %t A329869 runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; %t A329869 degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; %t A329869 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]+1==degdep[#]&]],{n,0,10}] %Y A329869 The version for binary indices is A329866. %Y A329869 Compositions counted by runs-resistance are A329744. %Y A329869 Compositions counted by cuts-resistance are A329861. %Y A329869 Cf. A003242, A098504, A114901, A242882, A318928, A319411, A319416, A319420, A319421, A329864, A329865, A329867, A329868. %K A329869 nonn,more %O A329869 0,3 %A A329869 _Gus Wiseman_, Nov 23 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE