# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a329866 Showing 1-1 of 1 %I A329866 #7 Nov 24 2019 10:00:27 %S A329866 1,3,16,30,33,48,55,56,59,60,67,68,72,79,95,97,110,112,118,120,121, %T A329866 125,134,135,137,143,145,158,160,195,196,219,220,225,231,241,250,258, %U A329866 270,280,286,291,292,315,316,351,381,382,390,391,393,399,415,416,431,432 %N A329866 Numbers whose binary expansion has its runs-resistance equal to its cuts-resistance minus 1. %C A329866 For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined to be the number of applications required to reach a singleton. %C A329866 For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word. %H A329866 Claude Lenormand, Deux transformations sur les mots, Preprint, 5 pages, Nov 17 2003. %e A329866 The sequence of terms together with their binary expansions begins: %e A329866 1: 1 %e A329866 3: 11 %e A329866 16: 10000 %e A329866 30: 11110 %e A329866 33: 100001 %e A329866 48: 110000 %e A329866 55: 110111 %e A329866 56: 111000 %e A329866 59: 111011 %e A329866 60: 111100 %e A329866 67: 1000011 %e A329866 68: 1000100 %e A329866 72: 1001000 %e A329866 79: 1001111 %e A329866 95: 1011111 %e A329866 97: 1100001 %e A329866 110: 1101110 %e A329866 112: 1110000 %e A329866 118: 1110110 %e A329866 120: 1111000 %e A329866 For example, 79 has runs-resistance 3 because we have (1001111) -> (124) -> (111) -> (3), while the cuts-resistance is 4 because we have (1001111) -> (0111) -> (11) -> (1) -> (), so 79 is in the sequence. %t A329866 runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; %t A329866 degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; %t A329866 Select[Range[100],runsres[IntegerDigits[#,2]]-degdep[IntegerDigits[#,2]]==-1&] %Y A329866 Positions of -1's in A329867. %Y A329866 The version for runs-resistance equal to cuts-resistance is A329865. %Y A329866 Compositions with runs-resistance equal to cuts-resistance are A329864. %Y A329866 Compositions with runs-resistance = cuts-resistance minus 1 are A329869. %Y A329866 Runs-resistance of binary expansion is A318928. %Y A329866 Cuts-resistance of binary expansion is A319416. %Y A329866 Compositions counted by runs-resistance are A329744. %Y A329866 Compositions counted by cuts-resistance are A329861. %Y A329866 Binary words counted by runs-resistance are A319411 and A329767. %Y A329866 Binary words counted by cuts-resistance are A319421 and A329860. %Y A329866 Cf. A000975, A003242, A107907, A164707, A329738, A329868. %K A329866 nonn %O A329866 1,2 %A A329866 _Gus Wiseman_, Nov 23 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE