# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a329741 Showing 1-1 of 1 %I A329741 #8 Nov 21 2019 18:59:19 %S A329741 1,1,1,3,6,11,14,34,52,114,225,464,539,1183,1963,3753,6120,11207, %T A329741 19808,38254,77194,147906,224853,374216,611081,1099933,2129347, %U A329741 3336099,5816094,9797957,17577710,29766586,53276392,93139668,163600815,324464546,637029845,1010826499 %N A329741 Number of compositions of n whose multiplicities cover an initial interval of positive integers. %C A329741 A composition of n is a finite sequence of positive integers with sum n. %e A329741 The a(1) = 1 through a(6) = 14 compositions: %e A329741 (1) (2) (3) (4) (5) (6) %e A329741 (1,2) (1,3) (1,4) (1,5) %e A329741 (2,1) (3,1) (2,3) (2,4) %e A329741 (1,1,2) (3,2) (4,2) %e A329741 (1,2,1) (4,1) (5,1) %e A329741 (2,1,1) (1,1,3) (1,1,4) %e A329741 (1,2,2) (1,2,3) %e A329741 (1,3,1) (1,3,2) %e A329741 (2,1,2) (1,4,1) %e A329741 (2,2,1) (2,1,3) %e A329741 (3,1,1) (2,3,1) %e A329741 (3,1,2) %e A329741 (3,2,1) %e A329741 (4,1,1) %t A329741 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; %t A329741 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[Length/@Split[Sort[#]]]&]],{n,20}] %Y A329741 Looking at run-lengths instead of multiplicities gives A329766. %Y A329741 The complete case is A329748. %Y A329741 Complete compositions are A107429. %Y A329741 Cf. A000740, A008965, A098504, A242882, A244164, A329738, A329739, A329740. %K A329741 nonn %O A329741 0,4 %A A329741 _Gus Wiseman_, Nov 20 2019 %E A329741 a(0), a(21)-a(37) from _Alois P. Heinz_, Nov 21 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE