# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a329142 Showing 1-1 of 1 %I A329142 #7 Nov 10 2019 20:29:05 %S A329142 1,12,20,24,28,40,44,45,48,52,56,60,63,68,72,76,80,84,88,90,92,96,99, %T A329142 104,112,116,117,120,124,126,132,135,136,140,144,148,152,153,156,160, %U A329142 164,168,171,172,175,176,180,184,188,189,192,198,200,204,207,208,212 %N A329142 Numbers whose prime signature is not a necklace. %C A329142 After a(1) = 1, first differs from A112769 in lacking 1350. %C A329142 A number's prime signature (A124010) is the sequence of positive exponents in its prime factorization. %C A329142 A necklace is a finite sequence that is lexicographically minimal among all of its cyclic rotations. %e A329142 The sequence of terms together with their prime signatures begins: %e A329142 1: () %e A329142 12: (2,1) %e A329142 20: (2,1) %e A329142 24: (3,1) %e A329142 28: (2,1) %e A329142 40: (3,1) %e A329142 44: (2,1) %e A329142 45: (2,1) %e A329142 48: (4,1) %e A329142 52: (2,1) %e A329142 56: (3,1) %e A329142 60: (2,1,1) %e A329142 63: (2,1) %e A329142 68: (2,1) %e A329142 72: (3,2) %e A329142 76: (2,1) %e A329142 80: (4,1) %e A329142 84: (2,1,1) %e A329142 88: (3,1) %e A329142 90: (1,2,1) %e A329142 92: (2,1) %t A329142 neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; %t A329142 Select[Range[100],#==1||!neckQ[Last/@FactorInteger[#]]&] %Y A329142 Complement of A329138. %Y A329142 Binary necklaces are A000031. %Y A329142 Non-necklace compositions are A329145. %Y A329142 Numbers whose reversed binary expansion is a necklace are A328595. %Y A329142 Numbers whose prime signature is a Lyndon word are A329131. %Y A329142 Numbers whose prime signature is periodic are A329140. %Y A329142 Cf. A001037, A008965, A025487, A056239, A097318, A112798, A118914, A124010, A181819, A304678, A328596, A329139. %K A329142 nonn %O A329142 1,2 %A A329142 _Gus Wiseman_, Nov 09 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE