# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a328846 Showing 1-1 of 1 %I A328846 #21 Jun 30 2024 09:03:34 %S A328846 0,0,2,3,8,5,12,8,24,18,20,13,36,21,30,30,64,34,54,55,60,45,48,89,96, %T A328846 50,68,81,88,144,90,233,160,72,102,75,144,377,148,102,160,610,132,987, %U A328846 140,135,224,1597,240,112,150,153,188,2584,216,120,232,222,346,4181,240,6765,528,198,384,170,210,10946,272,336,220,17711,360 %N A328846 The second Fibonacci based variant of arithmetic derivative: a(p) = A000045(2+A000720(p)) for prime p, a(u*v) = a(u)*v + u*a(v), with a(0) = a(1) = 0. Also called PrimePi-Fibonacci variant of the arithmetic derivative. %H A328846 Antti Karttunen, Table of n, a(n) for n = 0..10000 %H A328846 Index entries for sequences related to prime indices in the factorization of n %F A328846 a(n) = n * Sum e_j * A000045(2+A000720(p_j))/p_j for n = Product p_j^e_j. %F A328846 a(A000040(n)) = A000045(2+n). %F A328846 A007895(a(n)) = A328848(n). %o A328846 (PARI) A328846(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*fibonacci(2+primepi(f[i,1]))/f[i, 1])); %Y A328846 Cf. A000040, A000045, A000720, A003965, A007895, A328848. %Y A328846 Cf. also A003415, A258851, A328768, A328769, A328845 for other arithmetic derivatives, and also A371192 for another PrimePi-Fibonacci variant. %Y A328846 Cf. A374035 [= gcd(a(n), A328845(n))], A374048 (antiparity of this sequence), A374049 (indices of even terms), A374050 (of odd terms). %K A328846 nonn %O A328846 0,3 %A A328846 _Antti Karttunen_, Oct 28 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE