# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a327053 Showing 1-1 of 1 %I A327053 #9 Feb 04 2024 12:39:31 %S A327053 1,1,3,62,24710,2076948136,9221293198653529144, %T A327053 170141182628636920684331812494864430896 %N A327053 Number of T_0 (costrict) set-systems covering n vertices where every two vertices appear together in some edge (cointersecting). %C A327053 A set-system is a finite set of finite nonempty sets. Its elements are sometimes called edges. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. This sequence counts covering set-systems whose dual is strict and pairwise intersecting. %F A327053 Inverse binomial transform of A327052. %e A327053 The a(1) = 1 through a(2) = 3 set-systems: %e A327053 {} {{1}} {{1},{1,2}} %e A327053 {{2},{1,2}} %e A327053 {{1},{2},{1,2}} %e A327053 The a(3) = 62 set-systems: %e A327053 1 2 123 1 2 3 123 1 2 12 13 23 1 2 3 12 13 23 1 2 3 12 13 23 123 %e A327053 1 3 123 1 12 13 23 1 2 3 12 123 1 2 3 12 13 123 %e A327053 2 3 123 1 2 12 123 1 2 3 13 123 1 2 3 12 23 123 %e A327053 1 12 123 1 2 13 123 1 2 3 23 123 1 2 3 13 23 123 %e A327053 1 13 123 1 2 23 123 1 3 12 13 23 1 2 12 13 23 123 %e A327053 12 13 23 1 3 12 123 2 3 12 13 23 1 3 12 13 23 123 %e A327053 2 12 123 1 3 13 123 1 2 12 13 123 2 3 12 13 23 123 %e A327053 2 23 123 1 3 23 123 1 2 12 23 123 %e A327053 3 13 123 2 12 13 23 1 2 13 23 123 %e A327053 3 23 123 2 3 12 123 1 3 12 13 123 %e A327053 12 13 123 2 3 13 123 1 3 12 23 123 %e A327053 12 23 123 2 3 23 123 1 3 13 23 123 %e A327053 13 23 123 3 12 13 23 2 3 12 13 123 %e A327053 1 12 13 123 2 3 12 23 123 %e A327053 1 12 23 123 2 3 13 23 123 %e A327053 1 13 23 123 1 12 13 23 123 %e A327053 2 12 13 123 2 12 13 23 123 %e A327053 2 12 23 123 3 12 13 23 123 %e A327053 2 13 23 123 %e A327053 3 12 13 123 %e A327053 3 12 23 123 %e A327053 3 13 23 123 %e A327053 12 13 23 123 %t A327053 dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; %t A327053 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A327053 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&stableQ[dual[#],Intersection[#1,#2]=={}&]&]],{n,0,3}] %Y A327053 The pairwise intersecting case is A319774. %Y A327053 The BII-numbers of these set-systems are the intersection of A326947 and A326853. %Y A327053 The non-T_0 version is A327040. %Y A327053 The non-covering version is A327052. %Y A327053 Cf. A003465, A305843, A319767, A326854, A327020, A327037, A327039. %K A327053 nonn,more %O A327053 0,3 %A A327053 _Gus Wiseman_, Aug 18 2019 %E A327053 a(5)-a(7) from _Christian Sievers_, Feb 04 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE