# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a326841 Showing 1-1 of 1 %I A326841 #7 Aug 09 2019 12:15:31 %S A326841 1,2,3,4,5,7,8,9,11,12,13,16,17,19,23,25,27,29,30,31,32,36,37,40,41, %T A326841 43,47,48,49,53,59,61,63,64,67,71,73,79,81,83,84,89,97,101,103,107, %U A326841 108,109,112,113,121,125,127,128,131,137,139,144,149,151,157,163 %N A326841 Heinz numbers of integer partitions of m >= 0 using divisors of m. %C A326841 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A326841 The enumeration of these partitions by sum is given by A018818. %H A326841 R. J. Mathar, Table of n, a(n) for n = 1..543 %e A326841 The sequence of terms together with their prime indices begins: %e A326841 1: {} %e A326841 2: {1} %e A326841 3: {2} %e A326841 4: {1,1} %e A326841 5: {3} %e A326841 7: {4} %e A326841 8: {1,1,1} %e A326841 9: {2,2} %e A326841 11: {5} %e A326841 12: {1,1,2} %e A326841 13: {6} %e A326841 16: {1,1,1,1} %e A326841 17: {7} %e A326841 19: {8} %e A326841 23: {9} %e A326841 25: {3,3} %e A326841 27: {2,2,2} %e A326841 29: {10} %e A326841 30: {1,2,3} %e A326841 31: {11} %p A326841 isA326841 := proc(n) %p A326841 local ifs,psigsu,p,psig ; %p A326841 psigsu := A056239(n) ; %p A326841 for ifs in ifactors(n)[2] do %p A326841 p := op(1,ifs) ; %p A326841 psig := numtheory[pi](p) ; %p A326841 if modp(psigsu,psig) <> 0 then %p A326841 return false; %p A326841 end if; %p A326841 end do: %p A326841 true; %p A326841 end proc: %p A326841 for i from 1 to 3000 do %p A326841 if isA326841(i) then %p A326841 printf("%d %d\n",n,i); %p A326841 n := n+1 ; %p A326841 end if; %p A326841 end do: # _R. J. Mathar_, Aug 09 2019 %t A326841 Select[Range[100],With[{y=If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]},And@@IntegerQ/@(Total[y]/y)]&] %Y A326841 The case where the length also divides m is A326847. %Y A326841 Cf. A001222, A018818, A056239, A067538, A112798, A316413, A326836, A326842. %K A326841 nonn %O A326841 1,2 %A A326841 _Gus Wiseman_, Jul 26 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE