# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a326327 Showing 1-1 of 1 %I A326327 #16 Mar 06 2020 04:04:51 %S A326327 1,0,1,0,-1,1,0,5,-2,1,0,-61,16,-3,1,0,1385,-272,33,-4,1,0,-50521, %T A326327 7936,-723,56,-5,1,0,2702765,-353792,25953,-1504,85,-6,1,0,-199360981, %U A326327 22368256,-1376643,64256,-2705,120,-7,1,0,19391512145,-1903757312,101031873,-3963904,134185,-4416,161,-8,1 %N A326327 A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^(-n), for m = 2, n >= 0, k >= 0; square array read by descending antidiagonals. %H A326327 Eric Weisstein's World of Mathematics, Mittag-Leffler Function %e A326327 Array starts: %e A326327 [0] 1, 0, 0, 0, 0, 0, 0, 0, ... A000007 %e A326327 [1] 1, -1, 5, -61, 1385, -50521, 2702765, -199360981, ... A028296 %e A326327 [2] 1, -2, 16, -272, 7936, -353792, 22368256, -1903757312, ... A000182 %e A326327 [3] 1, -3, 33, -723, 25953, -1376643, 101031873, -9795436563, ... A326328 %e A326327 [4] 1, -4, 56, -1504, 64256, -3963904, 332205056, -36246728704, ... %e A326327 [5] 1, -5, 85, -2705, 134185, -9451805, 892060285, -108357876905, ... %e A326327 [6] 1, -6, 120, -4416, 249600, -19781376, 2078100480, -278400270336, ... %e A326327 A045944, %e A326327 Seen as a triangle: %e A326327 [0] [1] %e A326327 [1] [0, 1] %e A326327 [2] [0, -1, 1] %e A326327 [3] [0, 5, -2, 1] %e A326327 [4] [0, -61, 16, -3, 1] %e A326327 [5] [0, 1385, -272, 33, -4, 1] %e A326327 [6] [0, -50521, 7936, -723, 56, -5, 1] %e A326327 [7] [0, 2702765, -353792, 25953, -1504, 85, -6, 1] %t A326327 cl[m_, p_, len_] := CoefficientList[ %t A326327 Series[FunctionExpand[MittagLefflerE[m, z]^p], {z, 0, len}], z]; %t A326327 MLPower[m_, 0, len_] := Table[KroneckerDelta[0, n], {n, 0, len - 1}]; %t A326327 MLPower[m_, n_, len_] := cl[m, n, len - 1] (m Range[0, len - 1])!; %t A326327 For[n = 0, n < 8, n++, Print[MLPower[2, -n, 8]]] %o A326327 (Sage) %o A326327 def MLPower(m, p, len): %o A326327 if p == 0: return [p^k for k in (0..len-1)] %o A326327 f = [i/m for i in (1..m-1)] %o A326327 h = lambda x: hypergeometric([], f, (x/m)^m) %o A326327 g = [v for v in taylor(h(x)^p, x, 0, (len-1)*m).list() if v != 0] %o A326327 return [factorial(m*k)*v for (k, v) in enumerate(g)] %o A326327 for p in (0..6): print(MLPower(2, -p, 9)) %Y A326327 Rows: A000007 (row 0), A028296 (row 1), A000182 (row 2), A326328(row 3). %Y A326327 Columns: A045944 (col. 2). %Y A326327 Cf. A326476 (m=2, p>=0), this sequence (m=2, p<=0), A326474 (m=3, p>=0), A326475 (m=3, p<=0). %K A326327 sign,tabl %O A326327 0,8 %A A326327 _Peter Luschny_, Jul 07 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE