# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a326206 Showing 1-1 of 1 %I A326206 #14 Aug 23 2023 08:43:25 %S A326206 0,0,1,4,34,633,23368,1699012,237934760,64558137140,34126032806936, %T A326206 35513501049012952 %N A326206 Number of n-vertex labeled simple graphs containing a Hamiltonian path. %C A326206 A path is Hamiltonian if it passes through every vertex exactly once. %H A326206 F. Hüffner, tinygraph, software for generating integer sequences based on graph properties, version 9766535. %H A326206 Wikipedia, Hamiltonian path %H A326206 Gus Wiseman, Enumeration of paths and cycles and e-coefficients of incomparability graphs, arXiv:0709.0430 [math.CO], 2007. %H A326206 Gus Wiseman, The a(4) = 34 simple graphs containing a Hamiltonian path %F A326206 A006125(n) = a(n) + A326205(n). %t A326206 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],FindHamiltonianPath[Graph[Range[n],#]]!={}&]],{n,0,4}] (* Mathematica 10.2+ *) %Y A326206 The unlabeled case is A057864. %Y A326206 The directed case is A326214 (with loops) or A326217 (without loops). %Y A326206 Simple graphs without a Hamiltonian path are A326205. %Y A326206 Simple graphs with a Hamiltonian cycle are A326208. %Y A326206 Cf. A003216, A006125, A057864, A283420. %K A326206 nonn,more %O A326206 0,4 %A A326206 _Gus Wiseman_, Jun 14 2019 %E A326206 a(7)-a(11) added using tinygraph by _Falk Hüffner_, Jun 21 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE