# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a324350 Showing 1-1 of 1 %I A324350 #12 Feb 26 2019 08:19:06 %S A324350 1,1,1,1,2,1,1,1,1,1,1,2,3,2,1,1,1,3,3,1,1,1,2,3,6,3,2,1,1,1,3,3,3,3, %T A324350 1,1,1,2,1,6,9,6,1,2,1,1,1,1,1,9,9,1,1,1,1,1,2,3,2,1,18,1,2,3,2,1,1,1, %U A324350 3,3,1,1,1,1,3,3,1,1,1,2,3,6,3,2,5,2,3,6,3,2,1,1,1,3,3,3,3,5,5,3,3,3,3,1,1,1,2,1,6,9,6,5,10,5,6,9,6,1,2,1 %N A324350 Square array read by antidiagonals: A(x,y) = gcd(A276086(x),A276086(y)), for x, y >= 0. %H A324350 Antti Karttunen, Table of n, a(n) for n = 0..7259 (the first 120 antidiagonals of the array) %H A324350 Antti Karttunen, Data supplement: n, a(n) computed for n = 0..65702 %H A324350 Index entries for sequences related to primorial base %F A324350 A(x,y) = gcd(A276086(x), A276086(y)). %F A324350 A(x,y) = A276086(A324351(x,y)). %e A324350 The array A begins: %e A324350 0 1 2 3 4 5 6 7 8 9 10 11 12 %e A324350 x/y ------------------------------------------------------ %e A324350 0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A324350 1: 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, ... %e A324350 2: 1, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 1, ... %e A324350 3: 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, ... %e A324350 4: 1, 1, 3, 3, 9, 9, 1, 1, 3, 3, 9, 9, 1, ... %e A324350 5: 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, ... %e A324350 6: 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, ... %e A324350 7: 1, 2, 1, 2, 1, 2, 5, 10, 5, 10, 5, 10, 5, ... %e A324350 8: 1, 1, 3, 3, 3, 3, 5, 5, 15, 15, 15, 15, 5, ... %e A324350 9: 1, 2, 3, 6, 3, 6, 5, 10, 15, 30, 15, 30, 5, ... %e A324350 10: 1, 1, 3, 3, 9, 9, 5, 5, 15, 15, 45, 45, 5, ... %e A324350 11: 1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 5, ... %e A324350 12: 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 25, ... %o A324350 (PARI) %o A324350 up_to = 65703; \\ = binomial(362+1,2) %o A324350 A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; %o A324350 A324350sq(row,col) = gcd(A276086(row),A276086(col)); %o A324350 A324350list(up_to) = { my(v = vector(up_to), i=0); for(a=0,oo, for(col=0,a, if(i++ > up_to, return(v)); v[i] = A324350sq(a-col,col))); (v); }; %o A324350 v324350 = A324350list(up_to); %o A324350 A324350(n) = v324350[1+n]; %Y A324350 Cf. A003989, A276086 (central diagonal), A324198, A324351. %K A324350 nonn,tabl %O A324350 0,5 %A A324350 _Antti Karttunen_, Feb 25 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE