# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a319790 Showing 1-1 of 1 %I A319790 #9 May 31 2023 10:49:17 %S A319790 1,0,0,0,1,5,32,134,588,2335,9335,36506,144263,571238,2291894,9300462, %T A319790 38303796,160062325,679333926,2927951665,12817221628,56974693933, %U A319790 257132512297,1177882648846,5475237760563,25818721638720,123473772356785,598687942799298,2942344764127039 %N A319790 Number of non-isomorphic connected multiset partitions of weight n with empty intersection. %C A319790 The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices. %H A319790 Andrew Howroyd, Table of n, a(n) for n = 0..50 %F A319790 a(n) = A007718(n) - A007716(n) + A317757(n). - _Andrew Howroyd_, May 31 2023 %e A319790 Non-isomorphic representatives of the a(4) = 1 through a(5) = 5 connected multiset partitions: %e A319790 4: {{1},{2},{1,2}} %e A319790 5: {{1},{2},{1,2,2}} %e A319790 {{1},{1,2},{2,2}} %e A319790 {{2},{3},{1,2,3}} %e A319790 {{2},{1,3},{2,3}} %e A319790 {{1},{2},{2},{1,2}} %Y A319790 Cf. A007716, A007718, A049311, A056156, A283877, A317752, A317755, A317757. %Y A319790 Cf. A319077, A319748, A319755, A319778, A319781, A319791. %K A319790 nonn %O A319790 0,6 %A A319790 _Gus Wiseman_, Sep 27 2018 %E A319790 Terms a(11) and beyond from _Andrew Howroyd_, May 31 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE