# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a317256 Showing 1-1 of 1 %I A317256 #12 Mar 08 2020 21:48:30 %S A317256 1,1,2,3,5,6,11,13,19,25,35,42,61,74,98,122,161,194,254,304,388,472, %T A317256 589,700,878,1044,1278,1525,1851,2182,2651,3113,3735,4389,5231,6106, %U A317256 7278,8464,9995,11631,13680,15831,18602,21463,25068,28927,33654,38671,44942,51514 %N A317256 Number of alternately co-strong integer partitions of n. %C A317256 A sequence is alternately co-strong if either it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and, when reversed, are themselves an alternately co-strong sequence. %C A317256 Also the number of alternately strong reversed integer partitions of n. %e A317256 The a(1) = 1 through a(7) = 13 partitions: %e A317256 (1) (2) (3) (4) (5) (6) (7) %e A317256 (11) (21) (22) (32) (33) (43) %e A317256 (111) (31) (41) (42) (52) %e A317256 (211) (311) (51) (61) %e A317256 (1111) (2111) (222) (322) %e A317256 (11111) (321) (421) %e A317256 (411) (511) %e A317256 (2211) (3211) %e A317256 (3111) (4111) %e A317256 (21111) (22111) %e A317256 (111111) (31111) %e A317256 (211111) %e A317256 (1111111) %e A317256 For example, starting with the partition y = (3,2,2,1,1) and repeatedly taking run-lengths and reversing gives (3,2,2,1,1) -> (2,2,1) -> (1,2), which is not weakly decreasing, so y is not alternately co-strong. On the other hand, we have (3,3,2,2,1,1,1) -> (3,2,2) -> (2,1) -> (1,1) -> (2) -> (1), so (3,3,2,2,1,1,1) is counted under a(13). %t A317256 tniQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],tniQ[Reverse[Length/@Split[q]]]]]; %t A317256 Table[Length[Select[IntegerPartitions[n],tniQ]],{n,0,30}] %Y A317256 Cf. A000041, A100883, A181819, A182850, A182857, A304660, A305563, A317081, A317086, A317245, A317258. %Y A317256 The Heinz numbers of these partitions are given by A317257. %Y A317256 The total (instead of alternating) version is A332275. %Y A317256 Dominates A332289 (the normal version). %Y A317256 The generalization to compositions is A332338. %Y A317256 The dual version is A332339. %Y A317256 The case of reversed partitions is (also) A332339. %Y A317256 Cf. A316496 A317491, A329746, A332292, A332297, A332340. %K A317256 nonn %O A317256 0,3 %A A317256 _Gus Wiseman_, Jul 25 2018 %E A317256 Updated with corrected terminology by _Gus Wiseman_, Mar 08 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE