# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a316595 Showing 1-1 of 1 %I A316595 #9 Jul 10 2018 08:01:22 %S A316595 1,10,78,561,3885,26565,180285,1221554,8272252,56063900,380361212, %T A316595 2583878630,17575724491,119705606020,816297170565,5572946307857, %U A316595 38088275031435,260576838539320,1784382167211378,12229792806897910,83888652677221112,575858960208964685,3955813057814040153,27192049709537787123,187032147327469550926,1287187641890879422980,8863461073824746853534,61064188079233277265138,420899733623010047381885,2902469328540659624278455 %N A316595 a(n) equals the coefficient of x^n in Sum_{m>=0} (x^m + 5 + 1/x^m)^m for n >= 1. %C A316595 The coefficient of 1/x^n in Sum_{m>=0} (x^m + 5 + 1/x^m)^m equals a(n) for n > 0, while the constant term in the sum increases without limit. %C A316595 a(n) = Sum_{k=0..n-1} A316590(n,k) * 5^k for n >= 1. %H A316595 Paul D. Hanna, Table of n, a(n) for n = 1..260 %F A316595 a(n) ~ 7^(n + 1/2) / (2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Jul 10 2018 %e A316595 G.f.: A(x) = x + 10*x^2 + 78*x^3 + 561*x^4 + 3885*x^5 + 26565*x^6 + 180285*x^7 + 1221554*x^8 + 8272252*x^9 + 56063900*x^10 + ... %e A316595 such that Sum_{m>=0} (x^m + 5 + 1/x^m)^m = A(x) + A(1/x) + (infinity)*x^0. %o A316595 (PARI) {a(n) = polcoeff( sum(m=1,n, (x^-m + 5 + x^m)^m +x*O(x^n)), n,x)} %o A316595 for(n=1,40, print1(a(n),", ")) %Y A316595 Cf. A304638, A316590, A316591, A316592, A316593, A316594. %K A316595 nonn %O A316595 1,2 %A A316595 _Paul D. Hanna_, Jul 08 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE