# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a303364 Showing 1-1 of 1 %I A303364 #16 Dec 29 2020 03:19:48 %S A303364 1,1,1,0,2,1,2,1,1,3,2,2,4,3,3,4,6,5,5,6,7,8,9,10,10,11,11,14,14,17, %T A303364 16,18,19,23,24,27,29,30,33,36,41,41,42,46,51,56,60,66,67,71,81,86,93, %U A303364 96,101,110,121,129,135,144,153,159,173,192,204,207,224 %N A303364 Number of strict integer partitions of n with pairwise indivisible and squarefree parts. %H A303364 Fausto A. C. Cariboni, Table of n, a(n) for n = 1..700 (terms 0..400 from Andrew Howroyd) %e A303364 The a(23) = 9 strict integer partitions are (23), (13,10), (17,6), (21,2), (10,7,6), (11,7,5), (13,7,3), (11,7,3,2), (13,5,3,2). %t A303364 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@SquareFreeQ/@#&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,60}] %o A303364 (PARI) %o A303364 lista(nn)={local(Cache=Map()); %o A303364 my(excl=vector(nn, n, sumdiv(n, d, 2^(n-d)))); %o A303364 my(c(n, m, b)= %o A303364 if(n==0, 1, %o A303364 while(m>n || bittest(b,0), m--; b>>=1); %o A303364 my(hk=[n, m, b], z); %o A303364 if(!mapisdefined(Cache, hk, &z), %o A303364 z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0); %o A303364 mapput(Cache, hk, z)); z)); %o A303364 my(a(n)=c(n, n, sum(i=1, n, if(!issquarefree(i), 2^(n-i))))); %o A303364 for(n=1, nn, print1(a(n), ", ")) %o A303364 } \\ _Andrew Howroyd_, Nov 02 2019 %Y A303364 Cf. A000009, A000837, A003238, A005117, A006126, A051424, A073576, A285572, A285573, A293606, A293993, A303362, A303365. %K A303364 nonn %O A303364 1,5 %A A303364 _Gus Wiseman_, Apr 22 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE