# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a308153 Showing 1-1 of 1 %I A308153 #11 May 14 2019 22:05:40 %S A308153 1,1,3,7,19,47,134,357,1031,2912,8612,25007,75378,223884,683915, %T A308153 2067578,6376800,19503546,60749341,187592661,587938043,1831377952, %U A308153 5773159368,18092820941,57328904204,180657986051,574735018826,1820143698295,5810522774503,18473074695503 %N A308153 G.f.: x * Product_{j>=1, k>=1} 1/(1 - a(j)*x^(j*k)). %p A308153 A:= proc(n) option remember; series(x*`if`(n=1, 1, mul(mul( %p A308153 1/(1-a(j)*x^(j*k)), k=1..(n-1)/j), j=1..n-1)), x, n+1) %p A308153 end: %p A308153 a:= n-> coeff(A(n), x, n): %p A308153 seq(a(n), n=1..35); # _Alois P. Heinz_, May 14 2019 %t A308153 a[n_] := a[n] = SeriesCoefficient[x Product[Product[1/(1 - a[j] x^(j k)), {k, 1, n - 1}], {j, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 30}] %Y A308153 Cf. A093637, A179467, A308154. %K A308153 nonn %O A308153 1,3 %A A308153 _Ilya Gutkovskiy_, May 14 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE