# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a307388 Showing 1-1 of 1 %I A307388 #36 May 07 2019 15:47:34 %S A307388 1,27,729,59049,43046721,31381059609,68630377364883, %T A307388 150094635296999121,328256967394537077627,717897987691852588770249, %U A307388 4710128697246244834921603689,92709463147897837085761925410587,3649600726280146254718103955713167842 %N A307388 Length of the period of decimal representation of Product_{k=1..n} A038111(k)/A038110(k). %C A307388 The offset is 9 since for 0 < n < 5, the product is an integer, and for 4 < n < 9 the decimal expansion ends with zeros. %H A307388 Jamie Morken, Mathematica Stack Exchange question %e A307388 For example for n=9 with (2/1) * (6/1) * (15/1) * (105/4) * (385/8) * (1001/16) * (17017/192) * (323323/3072) * (7436429/55296) = 2759414170256180364552625 / 154618822656 = 17846560482454.30745852273604315188195970323350694444444444444... so a(9) = 1. %t A307388 Primorial[n_] := Times @@ Prime[Range[n]] %t A307388 ClearAll[iter] %t A307388 ClearAll[fracPer, vp]; %t A307388 (*p-adic order*) %t A307388 vp[p_?PrimeQ, n_Integer] := %t A307388 Length@NestWhileList[#/p &, n/p, IntegerQ] - 1; %t A307388 (*fraction decimal expansion period*) %t A307388 fracPer[q_Integer] := 0; %t A307388 fracPer[q_Rational] := Module[{den, p2, p5}, den = Denominator[q]; %t A307388 p2 = vp[2, den]; %t A307388 p5 = vp[5, den]; %t A307388 den = den/2^p2/5^p5; %t A307388 If[den == 1, 0, MultiplicativeOrder[10, den]]]; %t A307388 iter[{periods_, frac_, n_}] := {{periods, fracPer[#]}, #, n + 1} &[ %t A307388 frac*Primorial[n]/EulerPhi[Primorial[Max[1, n - 1]]]]; %t A307388 Flatten@First@ %t A307388 Nest[iter, {0, Primorial[0]/EulerPhi[Primorial[0]], 0}, 50] %Y A307388 Cf. A038111, A038110, A051626, A058250. %K A307388 nonn,base %O A307388 9,2 %A A307388 _Jamie Morken_, Apr 06 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE