# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a306834 Showing 1-1 of 1 %I A306834 #17 Apr 07 2019 17:26:48 %S A306834 1,8,23,3,53,184,303,65,331,952,1293,1737,1135,2872,3577,1475,1357, %T A306834 6526,7799,3073,1344,12490,14399,16535,948,502,24367,9121,7631,33914, %U A306834 37851,42043,1663,51290,56505,20647,33875,73944,80457,87377,47358,34106,1033,119023,31972,137042,146959,157663 %N A306834 Numerator of the barycenter of first n primes defined as a(n) = numerator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)). %C A306834 It appears that lim_{n->infinity} (1/n)*(A014285(n)/A007504(n)) = k, where k is a constant around 2/3. %H A306834 Robert Israel, Table of n, a(n) for n = 1..10000 %F A306834 a(n) = numerator(Sum_{i=1..n} (i*prime(i)) / Sum_{i=1..n} prime(i)). %F A306834 a(n) = numerator(A014285(n)/A007504(n)). %p A306834 N:= 100: # for a(1)..a(N) %p A306834 Primes:= map(ithprime, [$1..N]): %p A306834 S1:= ListTools:-PartialSums(Primes): %p A306834 S2:= ListTools:-PartialSums(zip(`*`,Primes, [$1..N])): %p A306834 map(numer,zip(`/`,S2,S1)); # _Robert Israel_, Apr 07 2019 %t A306834 a[n_]:=Sum[i*Prime[i],{i,1,n}]/Sum[Prime[i],{i,1,n}]; %t A306834 Table[a[n]//Numerator,{n,1,40}] %o A306834 (PARI) a(n) = numerator(sum(i=1, n, i*prime(i))/sum(i=1, n, prime(i))); \\ _Michel Marcus_, Mar 15 2019 %Y A306834 Cf. A272206, A007504, A014285. %K A306834 nonn,frac,look %O A306834 1,2 %A A306834 _Andres Cicuttin_, Mar 12 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE