# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a306021 Showing 1-1 of 1 %I A306021 #22 Jan 16 2024 22:05:39 %S A306021 1,1,2,6,54,1754,1102746,68715913086,1180735735356265746734, %T A306021 170141183460507906731293351306656207090, %U A306021 7237005577335553223087828975127304177495735363998991435497132232365910414322 %N A306021 Number of set-systems spanning {1,...,n} in which all sets have the same size. %C A306021 a(n) is the number of labeled uniform hypergraphs spanning n vertices. - _Andrew Howroyd_, Jan 16 2024 %H A306021 Andrew Howroyd, Table of n, a(n) for n = 0..14 %F A306021 a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(1 - k + Sum_{d = 1..k} 2^binomial(k, d)). %F A306021 Inverse binomial transform of A306020. - _Andrew Howroyd_, Jan 16 2024 %e A306021 The a(3) = 6 set-systems in which all sets have the same size: %e A306021 {{1,2,3}} %e A306021 {{1}, {2}, {3}} %e A306021 {{1,2}, {1,3}} %e A306021 {{1,2}, {2,3}} %e A306021 {{1,3}, {2,3}} %e A306021 {{1,2}, {1,3}, {2,3}} %t A306021 Table[Sum[(-1)^(n-k)*Binomial[n,k]*(1+Sum[2^Binomial[k,d]-1,{d,k}]),{k,0,n}],{n,12}] %o A306021 (PARI) a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)))) \\ _Andrew Howroyd_, Jan 16 2024 %Y A306021 Row sums of A299471. %Y A306021 The unlabeled version is A301481. %Y A306021 The connected version is A299353. %Y A306021 Cf. A000005, A001315, A007716, A038041, A049311, A283877, A298422, A306017, A306018, A306019, A306020. %K A306021 nonn %O A306021 0,3 %A A306021 _Gus Wiseman_, Jun 17 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE