# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a293128
Showing 1-1 of 1
%I A293128 #16 Jan 02 2021 08:01:03
%S A293128 1,1,6,51,588,7990,126060,2242618,44546320,977152266,23500234512,
%T A293128 615372604033,17442275104496,532242021137346,17399782340548920,
%U A293128 606732491690590816,22477989291826848000,881635273413199806994,36493478646922003374096,1589642562747880936613248
%N A293128 Number of standard Young tableaux of 2n cells and height <= n.
%C A293128 Also the number of standard Young tableaux of 2n cells and <= n columns.
%C A293128 Also the number of 2n-length words w over n-ary alphabet {a1,a2,...,an} such that for every prefix z of w we have #(z,a1) >= #(z,a2) >= ... >= #(z,an), where #(z,x) counts the letters x in word z. The a(2) = 6 words of length 4 over alphabet {a,b} are: aaaa, aaab, aaba, abaa, aabb, abab.
%H A293128 Vaclav Kotesovec, Table of n, a(n) for n = 0..41 (terms 0..32 from Alois P. Heinz)
%H A293128 Wikipedia, Young tableau
%F A293128 a(n) = A182172(2n,n).
%p A293128 h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(l[k]
%p A293128 `if`(n=0 or i=1, h([l[], 1$n]), add(
%p A293128 g(n-i*j, i-1, [l[], i$j]), j=0..n/i)):
%p A293128 a:= n-> g(2*n, n, []):
%p A293128 seq(a(n), n=0..15);
%t A293128 h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] < j, 0, 1], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
%t A293128 g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
%t A293128 a[n_] := g[2n, n, {}];
%t A293128 a /@ Range[0, 15] (* _Jean-François Alcover_, Jan 02 2021, after _Alois P. Heinz_ *)
%Y A293128 Cf. A182172, A267436.
%K A293128 nonn
%O A293128 0,3
%A A293128 _Alois P. Heinz_, Sep 30 2017
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE