# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a292548 Showing 1-1 of 1 %I A292548 #14 Apr 30 2022 07:58:12 %S A292548 1,1,4,8,25,53,148,328,858,1938,4862,11066,27042,61662,147774,336854, %T A292548 795678,1810466,4228330,9597694,22211897,50279985,115489274,260686018, %U A292548 594986149,1339215285,3040004744,6823594396,15416270130,34510814918,77644149076,173368564396 %N A292548 Number of multisets of nonempty binary words with a total of n letters such that no word has a majority of 0's. %H A292548 Alois P. Heinz, Table of n, a(n) for n = 0..3213 %F A292548 G.f.: Product_{j>=1} 1/(1-x^j)^A027306(j). %F A292548 Euler transform of A027306. %e A292548 a(0) = 1: {}. %e A292548 a(1) = 1: {1}. %e A292548 a(2) = 4: {01}, {10}, {11}, {1,1}. %e A292548 a(3) = 8: {011}, {101}, {110}, {111}, {1,01}, {1,10}, {1,11}, {1,1,1}. %p A292548 g:= n-> 2^(n-1)+`if`(n::odd, 0, binomial(n, n/2)/2): %p A292548 a:= proc(n) option remember; `if`(n=0, 1, add(add(d* %p A292548 g(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n) %p A292548 end: %p A292548 seq(a(n), n=0..35); %t A292548 g[n_] := 2^(n-1) + If[OddQ[n], 0, Binomial[n, n/2]/2]; %t A292548 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d* %t A292548 g[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; %t A292548 Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Apr 30 2022, after _Alois P. Heinz_ *) %Y A292548 Row sums of A292506. %Y A292548 Column k=2 of A292712. %Y A292548 Cf. A027306. %K A292548 nonn %O A292548 0,3 %A A292548 _Alois P. Heinz_, Sep 18 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE