# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a298605 Showing 1-1 of 1 %I A298605 #25 Jan 08 2021 15:51:32 %S A298605 1,0,2,0,3,3,0,8,12,4,0,10,85,30,5,0,54,450,330,60,6,0,-42,3283,3255, %T A298605 910,105,7,0,944,22036,37352,12740,2072,168,8,0,-5112,182628,441756, %U A298605 200781,37800,4158,252,9,0,47160,1488240,5765540,3282300,747390,94500,7620,360,10 %N A298605 T(n,k) is 1/(k-1)! times the n-th derivative of the difference between the k-th tetration of x (power tower of order k) and its predecessor at x=1; triangle T(n,k), n>=1, 1<=k<=n, read by rows. %H A298605 Alois P. Heinz, Rows n = 1..141, flattened %H A298605 Eric Weisstein's World of Mathematics, Power Tower %H A298605 Wikipedia, Knuth's up-arrow notation %H A298605 Wikipedia, Tetration %F A298605 T(n,k) = n!/(k-1)! * [x^n] ((x+1)^^k - (x+1)^^(k-1)). %F A298605 T(n,k) = 1/(k-1)! * [(d/dx)^n (x^^k - x^^(k-1))]_{x=1}. %F A298605 T(n,k) = 1/(k-1)! * A277536(n,k). %F A298605 T(n,k) = n/(k-1)! * A295027(n,k). %e A298605 Triangle T(n,k) begins: %e A298605 1; %e A298605 0, 2; %e A298605 0, 3, 3; %e A298605 0, 8, 12, 4; %e A298605 0, 10, 85, 30, 5; %e A298605 0, 54, 450, 330, 60, 6; %e A298605 0, -42, 3283, 3255, 910, 105, 7; %e A298605 0, 944, 22036, 37352, 12740, 2072, 168, 8; %e A298605 0, -5112, 182628, 441756, 200781, 37800, 4158, 252, 9; %e A298605 0, 47160, 1488240, 5765540, 3282300, 747390, 94500, 7620, 360, 10; %e A298605 ... %p A298605 f:= proc(n) option remember; `if`(n<0, 0, %p A298605 `if`(n=0, 1, (x+1)^f(n-1))) %p A298605 end: %p A298605 T:= (n, k)-> n!/(k-1)!*coeff(series(f(k)-f(k-1), x, n+1), x, n): %p A298605 seq(seq(T(n, k), k=1..n), n=1..10); %p A298605 # second Maple program: %p A298605 b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=0, 0, %p A298605 -add(binomial(n-1, j)*b(j, k)*add(binomial(n-j, i)* %p A298605 (-1)^i*b(n-j-i, k-1)*(i-1)!, i=1..n-j), j=0..n-1))) %p A298605 end: %p A298605 T:= (n, k)-> (b(n, min(k, n))-`if`(k=0, 0, b(n, min(k-1, n))))/(k-1)!: %p A298605 seq(seq(T(n, k), k=1..n), n=1..10); %t A298605 f[n_] := f[n] = If[n < 0, 0, If[n == 0, 1, (x + 1)^f[n - 1]]]; %t A298605 T[n_, k_] := n!/(k - 1)!*SeriesCoefficient[f[k] - f[k - 1], { x, 0, n}]; %t A298605 Table[T[n, k], {n, 1, 10}, { k, 1, n}] // Flatten %t A298605 (* Second program: *) %t A298605 b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 0, 0, -Sum[Binomial[n-1, j]* b[j, k]*Sum[Binomial[n - j, i]* (-1)^i*b[n - j - i, k - 1]*(i - 1)!, {i, 1, n - j}], {j, 0, n - 1}]]]; %t A298605 T[n_, k_] := (b[n, Min[k, n]] - If[k == 0, 0, b[n, Min[k-1, n]]])/(k-1)!; %t A298605 Table[T[n, k], {n, 1, 10}, { k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 03 2018, from Maple *) %Y A298605 Columns k=1-2 give: A063524, A005727 (for n>1). %Y A298605 Main diagonal gives A000027. %Y A298605 Cf. A277536, A295027. %K A298605 sign,tabl %O A298605 1,3 %A A298605 _Alois P. Heinz_, Jan 22 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE