# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a296064 Showing 1-1 of 1 %I A296064 #19 May 14 2024 07:57:01 %S A296064 0,2,1,-3,5,-5,7,-7,9,-9,11,-11,13,-13,15,-15,17,-17,19,-19,21,-21,23, %T A296064 -23,25,-25,27,-27,29,-29,31,-31,33,-33,35,-35,37,-37,39,-39,41,-41, %U A296064 43,-43,45,-45,47,-47,49,-49,51,-51 %N A296064 a(1) = 0; thereafter a(n) is the smallest number (in absolute value) not yet in the sequence such that the arithmetic mean of the first n terms a(1), a(2), ..., a(n) is an integer. Preference is given to positive values of a(n). %H A296064 Robert Israel, Table of n, a(n) for n = 1..10000 %H A296064 Index entries for linear recurrences with constant coefficients, signature (-1,1,1). %F A296064 From _Robert Israel_, Dec 26 2017: (Start) %F A296064 a(n) = a(n-3)+a(n-2)-a(n-1) for n >= 7. %F A296064 G.f.: (2+3*x-4*x^2-x^3+2*x^4)*x^2/((1-x)*(x+1)^2). (End) %F A296064 a(n) = 1/2+(-1)^n*(1/2-n), n>=4. - _R. J. Mathar_, May 14 2024 %p A296064 0, 2, 1, -3, seq(seq(s*i,s=[1,-1]),i=5..100,2); # _Robert Israel_, Dec 26 2017 %t A296064 Nest[Append[#, Block[{k = 1, s = 1}, While[Nand[FreeQ[#, s k], IntegerQ@ Mean[Append[#, s k]]], If[s == 1, s = -1, k++; s = 1]]; s k]] &, {0}, 51] (* _Michael De Vlieger_, Dec 12 2017 *) %Y A296064 Cf. A296065 (partial sums), A127630. %Y A296064 Essentially the same as A296063. %K A296064 sign,easy %O A296064 1,2 %A A296064 _Enrique Navarrete_, Dec 04 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE